Abstract

Resonator-based optical sensors detect the change of refractive index in the environment by measuring the resonance shift. The sensitivity of such sensors is determined by how precise one can locate the resonant wavelength, which is thought to be limited by the bandwidth and the quality factor of the resonator. Here we show that, with a tunable resonator, one can determine the resonant wavelength with ultrahigh precision. Using a silicon microring resonator with an embedded p-i-n junction for electro-optic tuning, whose quality factor is only 14,000, we measured the resonant wavelength with a resolution of 0.06 pm, which corresponds to an index sensitivity of 107. This resonance measurement for sensing purposes can be done using a fixed-wavelength laser.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
    [CrossRef]
  2. L. He, Ş. Özdemir, J. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
    [CrossRef]
  3. I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, Nano Lett. 12, 1092 (2012).
    [CrossRef]
  4. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, Opt. Express 16, 15137 (2008).
    [CrossRef]
  5. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, Opt. Express 15, 7610 (2007).
    [CrossRef]
  6. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, Opt. Express 18, 923 (2010).
    [CrossRef]
  7. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Moss, Opt. Express 17, 14098 (2009).
    [CrossRef]
  8. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, J. Opt. Soc. Am. B 26, 1032 (2009).
    [CrossRef]
  9. Q. Xu, D. Fattal, and R. G. Beausoleil, Opt. Express 16, 4309 (2008).
    [CrossRef]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
    [CrossRef]
  11. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, Opt. Express 17, 22484 (2009).
    [CrossRef]
  12. A. Biberman and K. Bergman, Rep. Prog. Phys. 75, 046402 (2012).
    [CrossRef]
  13. C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, Opt. Express 19, 5143 (2011).
    [CrossRef]
  14. R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
    [CrossRef]

2012 (2)

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, Nano Lett. 12, 1092 (2012).
[CrossRef]

A. Biberman and K. Bergman, Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

2011 (2)

C. Qiu, J. Shu, Z. Li, X. Zhang, and Q. Xu, Opt. Express 19, 5143 (2011).
[CrossRef]

L. He, Ş. Özdemir, J. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

2010 (1)

2009 (3)

2008 (2)

2007 (2)

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, Opt. Express 15, 7610 (2007).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Agarwal, A.

Ament, I.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, Nano Lett. 12, 1092 (2012).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Asghari, M.

Baets, R.

Bartolozzi, I.

Beausoleil, R. G.

Bennett, B. R.

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Bergman, K.

A. Biberman and K. Bergman, Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

Biberman, A.

A. Biberman and K. Bergman, Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

Bienstman, P.

Cheben, P.

Chu, S.

De Vos, K.

Delâge, A.

Densmore, A.

Dong, P.

Duchesne, D.

Fattal, D.

Feng, D.

Ferrera, M.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

He, L.

L. He, Ş. Özdemir, J. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Henkel, A.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, Nano Lett. 12, 1092 (2012).
[CrossRef]

Hu, J.

Janz, S.

Kim, W.

L. He, Ş. Özdemir, J. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Kimerling, L. C.

Krishnamoorthy, A. V.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Kung, C.-C.

Lamont, M. R. E.

Lapointe, J.

Légaré, F.

Li, G.

Li, Z.

Liang, H.

Liao, S.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Little, B. E.

Lopinski, G.

McKinnon, R.

Mischki, T.

Morandotti, R.

Moss, D. J.

Özdemir, S.

L. He, Ş. Özdemir, J. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Peccianti, M.

Post, E.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Prasad, J.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, Nano Lett. 12, 1092 (2012).
[CrossRef]

Qian, W.

Qiu, C.

Razzari, L.

Schacht, E.

Schmachtel, S.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, Nano Lett. 12, 1092 (2012).
[CrossRef]

Schmid, J. H.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Shafiiha, R.

Shu, J.

Sönnichsen, C.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, Nano Lett. 12, 1092 (2012).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Sun, X.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Waldron, P.

Xu, D. X.

Xu, D.-X.

Xu, Q.

Yang, L.

L. He, Ş. Özdemir, J. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Zhang, X.

Zheng, D.

Zheng, X.

Zhu, J.

L. He, Ş. Özdemir, J. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sönnichsen, Nano Lett. 12, 1092 (2012).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Nature Nanotechnol. (1)

L. He, Ş. Özdemir, J. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Opt. Express (7)

Rep. Prog. Phys. (1)

A. Biberman and K. Bergman, Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Transmission spectra of a silicon microring modulator at the bias voltages of 0.8 V (black solid) and 0.9 V (blue dotted–dashed). Inset, scanning electron microscopy image of the microring modulator after etching. The false color shows the implanted areas.

Fig. 2.
Fig. 2.

Spectra of normalized optical transmission (black squares) and harmonic ratio R (red triangles) of the silicon microring modulator. (a) Broad spectra over a 0.7 nm range. The inset shows the harmonic components around the resonance wavelength (b) zoom-in spectra over a 20 pm wavelength range shown as the dashed rectangle in (a).

Fig. 3.
Fig. 3.

(a) Normalized optical transmission (black squares) and the harmonic ratio R (red triangles) versus the DC bias current applied on the microring modulator. The top axis shows the resonant wavelength shift corresponding to the bias current. (b) High-resolution (0.06pm) measurements within a narrow bias current range (2μA) inside the dashed rectangle in (a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λR(t)=λ0+δλ·cos(2πft),
E(f)Pin·δλ·T(λ),
E(2f)Pin·δλ2·T(λ),

Metrics