Abstract

N-type resonances excited in rubidium atoms confined in micrometric-thin cells with variable thickness from 1 μm to 2 mm are studied experimentally for the cases of a pure Rb atomic vapor and of a vapor with neon buffer gas. Good contrast and narrow linewidth were obtained for thicknesses as low as 30 μm. The higher amplitude and sharper profile of N-type resonances in the case of a buffered cell was exploited to study the splitting of the Rb85 D1 N-resonance in a magnetic field of up to 2200 G. The results are fully consistent with the theory. The mechanism responsible for forming N-resonances is discussed. Possible applications are addressed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
    [CrossRef]
  2. A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
    [CrossRef]
  3. I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, Opt. Lett. 31, 2353 (2006).
    [CrossRef]
  4. I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, Opt. Lett. 31, 622 (2006).
    [CrossRef]
  5. C. Hancox, M. Hohensee, M. Crescimanno, D. F. Phillips, and R. L. Walsworth, Opt. Lett. 33, 1536 (2008).
    [CrossRef]
  6. I. Ben-Aroya and G. Eisenstein, Opt. Express 19, 9956 (2011).
    [CrossRef]
  7. S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, Opt. Express 13, 1249 (2005).
    [CrossRef]
  8. T. Baluktsian, C. Urban, T. Bublat, H. Giessen, R. Löw, and T. Pfau, Opt. Lett. 35, 1950 (2010).
    [CrossRef]
  9. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).
    [CrossRef]
  10. G. Hakhumyan, A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Express 18, 14577 (2010).
    [CrossRef]
  11. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light–Atom Interactions (Oxford University, 2010).

2012 (1)

2011 (1)

2010 (2)

2008 (1)

2006 (2)

2005 (2)

2002 (1)

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Auzinsh, M.

M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light–Atom Interactions (Oxford University, 2010).

Baluktsian, T.

Ben-Aroya, I.

Bublat, T.

Budker, D.

M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light–Atom Interactions (Oxford University, 2010).

Crescimanno, M.

Eisenstein, G.

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Giessen, H.

Hakhumyan, G.

Hancox, C.

Hohensee, M.

Hollberg, L.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Kitching, J.

Knappe, S.

Leroy, C.

Liew, L.

Löw, R.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Matsko, A. B.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Moreland, J.

Novikova, I.

Papoyan, A.

Pashayan-Leroy, Y.

Pfau, T.

Phillips, D. F.

Rochester, S. M.

M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light–Atom Interactions (Oxford University, 2010).

Rostovtsev, Y. V.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Sargsyan, A.

Sarkisyan, D.

Schwindt, P.

Scully, M. O.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Shah, V.

Taichenachev, A. V.

Urban, C.

Walsworth, R. L.

Ye, C. Y.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Yudin, V. I.

Zibrov, A. S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of the experimental setup. ECDL, diode laser; FI, Faraday isolator; M, mirrors; 1, MTC in the oven; PBS, polarizing beam splitter; 2, permanent ring magnet; 3, photodetector; IF, interference filter with 10 nm transmission bandwidth at 795 nm; F , neutral density filters; BD, beam dump to block ν c . PBS5 is used to single out ν p for detection.

Fig. 2.
Fig. 2.

Transmission spectra of the probe radiation through the MTC with L = 40 μm . Spectra containing an N -resonance are presented for two cases: pure Rb vapor (upper curve), which gave a linewidth of around 10 MHz, and Rb with 150 Torr Ne (lower curve), which gave a linewidth of around 8 MHz. Spectra were obtained under nearly identical conditions. For convenience, the spectra are shifted in the vertical direction. The lower gray curve is spectrum of Reference 2. (Inset) Relevant energy levels of Rb 85 involved in N -resonance formation.

Fig. 3.
Fig. 3.

Splitting of the N -resonance in a moderate B -field. (a) Spectrum of Reference 1 for B = 0 ; (b)–(d)  N -resonance spectra for B = 59 G (b), 190 G (c), and 460 G (d). The labels 1–5 denote corresponding transitions shown in Fig. 6 below. The lower gray curve shows spectrum of Reference 2.

Fig. 4.
Fig. 4.

Splitting of the N -resonance in a strong B -field. a Spectrum of Reference 1 for B = 0 ; b–d  N -resonance spectra for B = 808 G (b), 1238 G (c), and 1836 G (d). The labels 1–5 denote corresponding transitions shown in Fig. 6 below. The lower gray curve shows spectrum of Reference 2.

Fig. 5.
Fig. 5.

Splitting of Rb 85 5 S 1 / 2 ground level hyperfine structure in an external magnetic field.

Fig. 6.
Fig. 6.

Frequency shifts of the N -resonance components in a B -field. Solid curves, theory; symbols, experiment. The inaccuracy does not exceed 2%. The initial and final Zeeman sublevels of F g = 2 , 3 are indicated in the table for components 1–5.

Metrics