Abstract

We propose a novel technique of microscopy to overcome the effects of both scattering and limitation of the accessible depth due to the objective working distance. By combining laser optical feedback imaging with acoustic photon tagging and synthetic aperture refocusing we demonstrate an ultimate shot noise sensitivity at low power (required to preserve the tissues) and a high resolution beyond the microscope working distance. More precisely, with a laser power of 10 mW, we obtain images with a micrometric resolution over approximately eight transport mean free paths, corresponding to 1.3 times the microscope working distance. Various applications such as biomedical diagnosis and research and development of new drugs and therapies can benefit from our imaging setup.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ramaz, B. C. Forget, M. Atlan, and A. C. Boccara, Opt. Express 12, 5469 (2004).
    [CrossRef]
  2. X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
    [CrossRef]
  3. S. R. Arridge, Inverse Probl. 15, R41 (1999).
    [CrossRef]
  4. M. Boffety, M. Allain, A. Sentenac, M. Massonneau, and R. Carminati, Opt. Lett. 33, 2290 (2008).
    [CrossRef]
  5. A. F. Fercher and E. Roth, Proc. SPIE 658, 48 (1986).
    [CrossRef]
  6. A. Dubois and C. Boccara, Med. Sci. 22, 859 (2006).
    [CrossRef]
  7. M. Minsky, Scanning 10, 128 (1988).
    [CrossRef]
  8. E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
    [CrossRef]
  9. O. Jacquin, W. Glastre, E. Lacot, O. Hugon, H. Guillet de Chatellus, and F. Ramaz, Opt. Lett. 37, 2514 (2012).
    [CrossRef]
  10. W. Glastre, O. Jacquin, O. Hugon, H. Guillet de Chatellus, and E. Lacot, J. Opt. Soc. Am. A 29, 1639 (2012).
    [CrossRef]
  11. E. Lacot, O. Jacquin, G. Roussely, O. Hugon, and H. Guillet de Chatellus, J. Opt. Soc. Am. A 27, 2450 (2010).
    [CrossRef]
  12. M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
    [CrossRef]
  13. W. Glastre, E. Lacot, O. Jacquin, O. Hugon, and H. Guillet de Chatellus, J. Opt. Soc. Am. A 29, 476 (2012).
    [CrossRef]

2012 (3)

2011 (1)

X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
[CrossRef]

2010 (1)

2008 (1)

2006 (1)

A. Dubois and C. Boccara, Med. Sci. 22, 859 (2006).
[CrossRef]

2004 (1)

2000 (1)

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
[CrossRef]

1999 (2)

1988 (1)

M. Minsky, Scanning 10, 128 (1988).
[CrossRef]

1986 (1)

A. F. Fercher and E. Roth, Proc. SPIE 658, 48 (1986).
[CrossRef]

Allain, M.

Arridge, S. R.

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

Atlan, M.

Boccara, A. C.

Boccara, C.

A. Dubois and C. Boccara, Med. Sci. 22, 859 (2006).
[CrossRef]

Boffety, M.

Carminati, R.

Cassereau, D.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
[CrossRef]

Day, R.

Derode, A.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
[CrossRef]

Dubois, A.

A. Dubois and C. Boccara, Med. Sci. 22, 859 (2006).
[CrossRef]

Fercher, A. F.

A. F. Fercher and E. Roth, Proc. SPIE 658, 48 (1986).
[CrossRef]

Fink, M.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
[CrossRef]

Forget, B. C.

Glastre, W.

Guillet de Chatellus, H.

Hugon, O.

Jacquin, O.

Lacot, E.

Liu, H.

X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
[CrossRef]

Massonneau, M.

Minsky, M.

M. Minsky, Scanning 10, 128 (1988).
[CrossRef]

Prada, C.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
[CrossRef]

Ramaz, F.

Roth, E.

A. F. Fercher and E. Roth, Proc. SPIE 658, 48 (1986).
[CrossRef]

Roussely, G.

Roux, P.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
[CrossRef]

Sentenac, A.

Stoeckel, F.

Tanter, M.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
[CrossRef]

Thomas, J. L.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
[CrossRef]

Wang, L. V.

X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
[CrossRef]

Wu, F.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Prog. Phys. 63, 1933 (2000).
[CrossRef]

Xu, X.

X. Xu, H. Liu, and L. V. Wang, Nat. Photonics 5, 154 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of SA LOFI setup with acoustic tagging. PD, photodiode; BS, beam splitter; Fe and FA, round trip frequency shifts induced by acousto-optic modulators and acoustic transducer, respectively; ×, frequency mixer.

Fig. 2.
Fig. 2.

Effect of SA operation on the raw acquisition equivalent setup. L is the raw defocus, r the beam waist, and θ the numerical aperture. OD=log(SSA/πr2) is the equivalent optical density and SSA the surface of the laser after a propagation of L.

Fig. 3.
Fig. 3.

Image examples (silica bead of 40 μm diameter). (a) and (b) without APT, (c) and (d) with APT. (a) and (c) are raw images, (b) and (d) are images after SA processing. The total frequency shift is 4.4 MHz in both cases. The laser output power is 10 mW.

Fig. 4.
Fig. 4.

Photometric performances with or without APT and comparison to shot noise. The total frequency shift is 4.4 MHz in both cases. Shot noise level is measured in the absence of reinjected photons.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

hR(L,x,y)=(exp(x2+y2(λLπr)2)exp(j2πx2+y22Lλ))2.
|hSA(L,x,y)|=hR(L,x,y)*hR(L,x,y)=exp(x2+y2r2).
ΔΦ(t)AΔn(t)=Asin(2πFAt/2).
hR(L,x,y,t)=hR(L,x,y)exp(jΔΦ(t))=hR(L,x,y)n=+Jn(A)exp(j2πnFAt/2).

Metrics