Abstract

A noninvasive diagnostic technique based on wavelength-resolved and magnified infrared images of weakly scattered light from a silicon photonic device may be useful to infer component characteristics, such as waveguide-resonator coupling, loss, quality factor, etc., at multiple locations, without the constraint of input/output couplers. Here, we demonstrate the benefit of high dynamic range microscope imaging for a silicon coupled microresonator device.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Aggarwal and S. Aditya, Proc. SPIE 4579, 310 (2001).
    [CrossRef]
  2. S. J. McNab, N. Moll, and Y. A. Vlasov, Opt. Express 11, 2927 (2003).
    [CrossRef]
  3. S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, Nat. Photonics 2, 90 (2008).
    [CrossRef]
  4. J. Topolancik, F. Vollmer, R. IIic, and M. Crescimanno, Opt. Express 17, 12470 (2009).
    [CrossRef]
  5. D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, and R. J. Warmack, Appl. Phys. Lett. 56, 1515 (1990).
    [CrossRef]
  6. M. L. M. Balistreri, D. J. W. Klunder, F. C. Blom, A. Driessen, H. W. J. M. Hoekstra, J. P. Korterik, L. Kuipers, and N. F. van Hulst, Opt. Lett. 24, 1829 (1999).
    [CrossRef]
  7. G. H. V. Rhodes, B. B. Goldberg, M. S. Unlu, S. T. Chu, and B. E. Little, IEEE J. Sel. Top. Quantum Electron. 6, 46 (2000).
    [CrossRef]
  8. A. L. Campillo, J. W. P. Hsu, K. R. Parameswaran, and M. M. Fejer, Opt. Lett. 28, 399 (2003).
    [CrossRef]
  9. M. L. Cooper, G. Gupta, J. S. Park, M. A. Schneider, I. B. Divliansky, and S. Mookherjea, Opt. Lett. 35, 784 (2010).
    [CrossRef]
  10. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, Opt. Express 18, 26505 (2010).
    [CrossRef]
  11. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
    [CrossRef]

2010

2009

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
[CrossRef]

J. Topolancik, F. Vollmer, R. IIic, and M. Crescimanno, Opt. Express 17, 12470 (2009).
[CrossRef]

2008

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, Nat. Photonics 2, 90 (2008).
[CrossRef]

2003

2001

V. Aggarwal and S. Aditya, Proc. SPIE 4579, 310 (2001).
[CrossRef]

2000

G. H. V. Rhodes, B. B. Goldberg, M. S. Unlu, S. T. Chu, and B. E. Little, IEEE J. Sel. Top. Quantum Electron. 6, 46 (2000).
[CrossRef]

1999

1990

D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, and R. J. Warmack, Appl. Phys. Lett. 56, 1515 (1990).
[CrossRef]

Aditya, S.

V. Aggarwal and S. Aditya, Proc. SPIE 4579, 310 (2001).
[CrossRef]

Aggarwal, V.

V. Aggarwal and S. Aditya, Proc. SPIE 4579, 310 (2001).
[CrossRef]

Assefa, S.

Baets, R.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
[CrossRef]

Balistreri, M. L. M.

Bandaru, P. R.

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, Nat. Photonics 2, 90 (2008).
[CrossRef]

Bienstman, P.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
[CrossRef]

Blom, F. C.

Campillo, A. L.

Chu, S. T.

G. H. V. Rhodes, B. B. Goldberg, M. S. Unlu, S. T. Chu, and B. E. Little, IEEE J. Sel. Top. Quantum Electron. 6, 46 (2000).
[CrossRef]

Claes, T.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
[CrossRef]

Cooper, M. L.

Crescimanno, M.

De Koninck, Y.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
[CrossRef]

De Vos, K.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
[CrossRef]

Divliansky, I. B.

Driessen, A.

Fejer, M. M.

Girones, J.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
[CrossRef]

Goldberg, B. B.

G. H. V. Rhodes, B. B. Goldberg, M. S. Unlu, S. T. Chu, and B. E. Little, IEEE J. Sel. Top. Quantum Electron. 6, 46 (2000).
[CrossRef]

Green, W. M. J.

Gupta, G.

Hoekstra, H. W. J. M.

Hsu, J. W. P.

IIic, R.

Jackson, H. E.

D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, and R. J. Warmack, Appl. Phys. Lett. 56, 1515 (1990).
[CrossRef]

Klunder, D. J. W.

Korterik, J. P.

Kuipers, L.

Little, B. E.

G. H. V. Rhodes, B. B. Goldberg, M. S. Unlu, S. T. Chu, and B. E. Little, IEEE J. Sel. Top. Quantum Electron. 6, 46 (2000).
[CrossRef]

McNab, S. J.

Moll, N.

Mookherjea, S.

Parameswaran, K. R.

Park, J. S.

Popelka, S.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
[CrossRef]

Reddick, R. C.

D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, and R. J. Warmack, Appl. Phys. Lett. 56, 1515 (1990).
[CrossRef]

Rhodes, G. H. V.

G. H. V. Rhodes, B. B. Goldberg, M. S. Unlu, S. T. Chu, and B. E. Little, IEEE J. Sel. Top. Quantum Electron. 6, 46 (2000).
[CrossRef]

Schacht, E.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
[CrossRef]

Schneider, M. A.

Sharp, S. H.

D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, and R. J. Warmack, Appl. Phys. Lett. 56, 1515 (1990).
[CrossRef]

Topolancik, J.

Tsai, D. P.

D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, and R. J. Warmack, Appl. Phys. Lett. 56, 1515 (1990).
[CrossRef]

Unlu, M. S.

G. H. V. Rhodes, B. B. Goldberg, M. S. Unlu, S. T. Chu, and B. E. Little, IEEE J. Sel. Top. Quantum Electron. 6, 46 (2000).
[CrossRef]

van Hulst, N. F.

Vlasov, Y. A.

Vollmer, F.

Warmack, R. J.

D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, and R. J. Warmack, Appl. Phys. Lett. 56, 1515 (1990).
[CrossRef]

Xia, F.

Yang, S. H.

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, Nat. Photonics 2, 90 (2008).
[CrossRef]

Appl. Phys. Lett.

D. P. Tsai, H. E. Jackson, R. C. Reddick, S. H. Sharp, and R. J. Warmack, Appl. Phys. Lett. 56, 1515 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

G. H. V. Rhodes, B. B. Goldberg, M. S. Unlu, S. T. Chu, and B. E. Little, IEEE J. Sel. Top. Quantum Electron. 6, 46 (2000).
[CrossRef]

IEEE Photon. J.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, IEEE Photon. J. 1, 225 (2009).
[CrossRef]

Nat. Photonics

S. Mookherjea, J. S. Park, S. H. Yang, and P. R. Bandaru, Nat. Photonics 2, 90 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

V. Aggarwal and S. Aditya, Proc. SPIE 4579, 310 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Single-frame image of the collimated light from a single-mode fiber (λ=1.55μm) viewed by an infrared camera (320×256 pixels, 12 bit quantization, i.e., digital readout ranging from 0 to 4095 ADU). (b) Cross-section along the dashed red curve shown in Fig. 1(a), and plotted on a dB scale, by calculating 10log10(ADU+1).

Fig. 2.
Fig. 2.

(a) Calibration curves, showing the inverse of the integration time versus incident optical power so as to utilize a similar dynamic range across different single-frame images, for two different ADC settings. Setting marked (1) is used here, based on its desirable linear characteristics. (b)–(f) Cross-sections (dB scale) of single-frame camera images, taken at successively higher input power (+10dB steps), and offset vertically (here, by 8.5 dB, which is calibrated and depends on the A/D quantization settings). A stitching algorithm is used to obtain a composite image, shown in panel (g): starting with the left-most (darkest) image, sections of brighter images are extracted, which fall within an acceptance window (here, 1.5 dB) of the anticipated offset between images.

Fig. 3.
Fig. 3.

(a) A typical single-frame camera image, showing digital readout noise at the 0–10 dB scale. Such noise makes quantitative analyses, e.g., of spatial rates of field envelope decay difficult. (b) The composite image, obtained from four individual images, reduces this low-pixel-level noise and reduces noise throughout the range.

Fig. 4.
Fig. 4.

(a) Binary mask of a device, consisting of an array of 35 nearest-neighbor coupled silicon racetrack resonators, as seen in the image plane of the camera (under 20× microscope magnification). The direction of light propagation is indicated. (b) Under conventional single-frame imaging, the input microrings are visible, but loss of contrast in the direction of propagation results in subsequent rings being invisible. (c) The composite image, obtained here by stitching together nine individual images taken at different camera integration times (keeping the input optical power in the device constant) shows higher dynamic range and successfully images light propagation through the entire device length (0.5 mm on the chip plane). The colorbars in Figs. 4(b) and 4(c) represent the digital camera readout in dB scale.

Metrics