Abstract

Intensity-based demodulation of extrinsic Fabry–Perot interferometric (EFPI) fiber-optic sensors requires the light wavelength to be on the quadrature point of the interferometric fringes for maximum sensitivity. In this Letter, we propose a novel and remote operating-point tuning method for EFPI fiber-optic sensors using microstructured fibers (MFs) and gas pressure. We demonstrated the method using a diaphragm-based EFPI sensor with a microstructured lead-in fiber. The holes in the MF were used as gas channels to remotely control the gas pressure inside the Fabry–Perot cavity. Because of the deformation of the diaphragm with gas pressure, the cavity length and consequently the operating point can be remotely tuned for maximum sensitivity. The proposed operating-point tuning method has the advantage of reduced complexity and cost compared to previously reported methods.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. B. Shen and A. Wang, Appl. Opt. 44, 5206 (2005).
    [CrossRef]
  2. A. Wang, H. Xiao, J. Wang, Z. Y. Wang, W. Zhao, and R. G. May, J. Lightwave Technol. 19, 1495 (2001).
    [CrossRef]
  3. A. Ezbiri and R. P. Tatam, Opt. Lett. 20, 1818 (1995).
    [CrossRef]
  4. M. Schmidt and N. Furstenau, Opt. Lett. 24, 599 (1999).
    [CrossRef]
  5. E. Lu, Z. L. Ran, F. Peng, Z. W. Liu, and F. G. Xu, Opt. Commun. 285, 1087 (2012).
    [CrossRef]
  6. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, Opt. Lett. 16, 273 (1991).
    [CrossRef]
  7. J. J. Alcoz, C. E. Lee, and H. F. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
    [CrossRef]
  8. J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820 (1995).
    [CrossRef]
  9. B. Yu and A. Wang, Appl. Opt. 42, 6824 (2003).
    [CrossRef]
  10. E. Hansis, T. Cubel, J. H. Choi, J. R. Guest, and G. Raithel, Rev. Sci. Instrum. 76, 033105 (2005).
    [CrossRef]
  11. M. Han, X. W. Wang, J. C. Xu, K. L. Cooper, and A. B. Wang, Opt. Eng. 44, 060506 (2005).
    [CrossRef]

2012 (1)

E. Lu, Z. L. Ran, F. Peng, Z. W. Liu, and F. G. Xu, Opt. Commun. 285, 1087 (2012).
[CrossRef]

2005 (3)

E. Hansis, T. Cubel, J. H. Choi, J. R. Guest, and G. Raithel, Rev. Sci. Instrum. 76, 033105 (2005).
[CrossRef]

M. Han, X. W. Wang, J. C. Xu, K. L. Cooper, and A. B. Wang, Opt. Eng. 44, 060506 (2005).
[CrossRef]

F. B. Shen and A. Wang, Appl. Opt. 44, 5206 (2005).
[CrossRef]

2003 (1)

2001 (1)

1999 (1)

1995 (2)

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820 (1995).
[CrossRef]

A. Ezbiri and R. P. Tatam, Opt. Lett. 20, 1818 (1995).
[CrossRef]

1991 (1)

1990 (1)

J. J. Alcoz, C. E. Lee, and H. F. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
[CrossRef]

Achenbach, J. D.

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820 (1995).
[CrossRef]

Alcoz, J. J.

J. J. Alcoz, C. E. Lee, and H. F. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
[CrossRef]

Choi, J. H.

E. Hansis, T. Cubel, J. H. Choi, J. R. Guest, and G. Raithel, Rev. Sci. Instrum. 76, 033105 (2005).
[CrossRef]

Claus, R. O.

Cooper, K. L.

M. Han, X. W. Wang, J. C. Xu, K. L. Cooper, and A. B. Wang, Opt. Eng. 44, 060506 (2005).
[CrossRef]

Cubel, T.

E. Hansis, T. Cubel, J. H. Choi, J. R. Guest, and G. Raithel, Rev. Sci. Instrum. 76, 033105 (2005).
[CrossRef]

Dorighi, J. F.

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820 (1995).
[CrossRef]

Ezbiri, A.

Furstenau, N.

Guest, J. R.

E. Hansis, T. Cubel, J. H. Choi, J. R. Guest, and G. Raithel, Rev. Sci. Instrum. 76, 033105 (2005).
[CrossRef]

Gunther, M. F.

Han, M.

M. Han, X. W. Wang, J. C. Xu, K. L. Cooper, and A. B. Wang, Opt. Eng. 44, 060506 (2005).
[CrossRef]

Hansis, E.

E. Hansis, T. Cubel, J. H. Choi, J. R. Guest, and G. Raithel, Rev. Sci. Instrum. 76, 033105 (2005).
[CrossRef]

Krishnaswamy, S.

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820 (1995).
[CrossRef]

Lee, C. E.

J. J. Alcoz, C. E. Lee, and H. F. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
[CrossRef]

Liu, Z. W.

E. Lu, Z. L. Ran, F. Peng, Z. W. Liu, and F. G. Xu, Opt. Commun. 285, 1087 (2012).
[CrossRef]

Lu, E.

E. Lu, Z. L. Ran, F. Peng, Z. W. Liu, and F. G. Xu, Opt. Commun. 285, 1087 (2012).
[CrossRef]

May, R. G.

Murphy, K. A.

Peng, F.

E. Lu, Z. L. Ran, F. Peng, Z. W. Liu, and F. G. Xu, Opt. Commun. 285, 1087 (2012).
[CrossRef]

Raithel, G.

E. Hansis, T. Cubel, J. H. Choi, J. R. Guest, and G. Raithel, Rev. Sci. Instrum. 76, 033105 (2005).
[CrossRef]

Ran, Z. L.

E. Lu, Z. L. Ran, F. Peng, Z. W. Liu, and F. G. Xu, Opt. Commun. 285, 1087 (2012).
[CrossRef]

Schmidt, M.

Shen, F. B.

Tatam, R. P.

Taylor, H. F.

J. J. Alcoz, C. E. Lee, and H. F. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
[CrossRef]

Vengsarkar, A. M.

Wang, A.

Wang, A. B.

M. Han, X. W. Wang, J. C. Xu, K. L. Cooper, and A. B. Wang, Opt. Eng. 44, 060506 (2005).
[CrossRef]

Wang, J.

Wang, X. W.

M. Han, X. W. Wang, J. C. Xu, K. L. Cooper, and A. B. Wang, Opt. Eng. 44, 060506 (2005).
[CrossRef]

Wang, Z. Y.

Xiao, H.

Xu, F. G.

E. Lu, Z. L. Ran, F. Peng, Z. W. Liu, and F. G. Xu, Opt. Commun. 285, 1087 (2012).
[CrossRef]

Xu, J. C.

M. Han, X. W. Wang, J. C. Xu, K. L. Cooper, and A. B. Wang, Opt. Eng. 44, 060506 (2005).
[CrossRef]

Yu, B.

Zhao, W.

Appl. Opt. (2)

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

J. J. Alcoz, C. E. Lee, and H. F. Taylor, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 302 (1990).
[CrossRef]

J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 820 (1995).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

E. Lu, Z. L. Ran, F. Peng, Z. W. Liu, and F. G. Xu, Opt. Commun. 285, 1087 (2012).
[CrossRef]

Opt. Eng. (1)

M. Han, X. W. Wang, J. C. Xu, K. L. Cooper, and A. B. Wang, Opt. Eng. 44, 060506 (2005).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

E. Hansis, T. Cubel, J. H. Choi, J. R. Guest, and G. Raithel, Rev. Sci. Instrum. 76, 033105 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup for operating point tuning of an EFPI sensor. Amp., amplifier. (b) Experimental setup for MF etching. (c) (Left) Schematic and (right) photo of the EFPI sensor head.

Fig. 2.
Fig. 2.

Refection spectrum of the fabricated EFPI sensor measured when sensor was immersed in water.

Fig. 3.
Fig. 3.

Inner pressure test of the sensor: (a) reflection spectrum at different inner pressure levels (marked are the fringe valleys of the same order) and (b) spectral position of one fringe valley versus differential inner pressure.

Fig. 4.
Fig. 4.

Responses of the EFPI fiber-optic sensor to an ultrasonic impulse when (a) no inner pressure applied and (b) inner pressure was applied through the MF.

Metrics