Abstract

Plasmonic vortices (PVs) are generated by focusing a radially polarized optical vortex (OV) beam onto a metal surface. The intensity distribution of the PV is registered with a near-field scanning optical microscopy and agrees well with a theoretical prediction as well as numerical calculation. Beside the dark central spot, the numerical calculation also shows an azimuthal Poynting vector belonging to the PV, implying that the orbital angular momentum (OAM) was transferred from the radially polarized OV. To directly verify the OAM, plasmonic trapping experiments with gold micrometer particles are performed and the particle rotation is visualized. Further experiments by varying the topological charge of radially polarized OVs show the corresponding changes in rotation in terms of speed and radius.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping

Dianwen Zhang, X.-C. Yuan, S. C. Tjin, and S. Krishnan
Opt. Express 12(10) 2220-2230 (2004)

Orbital angular momentum in noncollinear second-harmonic generation by off-axis vortex beams

Fabio Antonio Bovino, Matteo Braccini, Maurizio Giardina, and Concita Sibilia
J. Opt. Soc. Am. B 28(11) 2806-2811 (2011)

Optical vortex trap for resonant confinement of metal nanoparticles

Maria Dienerowitz, Michael Mazilu, Peter J. Reece, Thomas F. Krauss, and Kishan Dholakia
Opt. Express 16(7) 4991-4999 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (2)

» Media 1: MOV (5419 KB)     
» Media 2: MOV (7768 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription