Abstract

We investigated the time evolution of the cloaking behavior of a small particle placed in front of a meta-material slab with ε=μ=1+iδ. We found that the dipole excitation would be suppressed in the long time limit. While on the way to being cloaked, the excitation will exhibit oscillatory behavior as the result of the interference between particle-slab resonances and high density-of-states surface modes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
    [CrossRef]
  2. U. Leonhardt, Science 312, 1777 (2006).
    [CrossRef]
  3. G. Allan, L. Matti, and U. Gunther, Physiol. Meas. 24, 413 (2003).
    [CrossRef]
  4. H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010).
    [CrossRef]
  5. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  6. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef]
  7. G. W. Milton and N.-A. P. Nicorovici, Proc. R. Soc. A 462, 3027 (2006).
    [CrossRef]
  8. N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, Opt. Express 15, 6314 (2007).
    [CrossRef]
  9. J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. T. Chan, Phys. Rev. B 83, 115124 (2011).
    [CrossRef]
  10. R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
    [CrossRef]
  11. X. Huang, L. Zhou, and C. T. Chan, Phys. Rev. B 74, 045123 (2006).
    [CrossRef]

2011 (1)

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. T. Chan, Phys. Rev. B 83, 115124 (2011).
[CrossRef]

2010 (1)

H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010).
[CrossRef]

2007 (1)

2006 (4)

X. Huang, L. Zhou, and C. T. Chan, Phys. Rev. B 74, 045123 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef]

U. Leonhardt, Science 312, 1777 (2006).
[CrossRef]

G. W. Milton and N.-A. P. Nicorovici, Proc. R. Soc. A 462, 3027 (2006).
[CrossRef]

2003 (1)

G. Allan, L. Matti, and U. Gunther, Physiol. Meas. 24, 413 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

1968 (1)

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Allan, G.

G. Allan, L. Matti, and U. Gunther, Physiol. Meas. 24, 413 (2003).
[CrossRef]

Botten, L. C.

Chan, C. T.

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. T. Chan, Phys. Rev. B 83, 115124 (2011).
[CrossRef]

H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010).
[CrossRef]

X. Huang, L. Zhou, and C. T. Chan, Phys. Rev. B 74, 045123 (2006).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Chen, H.

H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010).
[CrossRef]

Dong, J.-W.

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. T. Chan, Phys. Rev. B 83, 115124 (2011).
[CrossRef]

Gunther, U.

G. Allan, L. Matti, and U. Gunther, Physiol. Meas. 24, 413 (2003).
[CrossRef]

Huang, X.

X. Huang, L. Zhou, and C. T. Chan, Phys. Rev. B 74, 045123 (2006).
[CrossRef]

Lai, Y.

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. T. Chan, Phys. Rev. B 83, 115124 (2011).
[CrossRef]

Leonhardt, U.

U. Leonhardt, Science 312, 1777 (2006).
[CrossRef]

Matti, L.

G. Allan, L. Matti, and U. Gunther, Physiol. Meas. 24, 413 (2003).
[CrossRef]

McPhedran, R. C.

Milton, G. W.

Nicorovici, N. A.

Nicorovici, N.-A. P.

G. W. Milton and N.-A. P. Nicorovici, Proc. R. Soc. A 462, 3027 (2006).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef]

Veselago, V. G.

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Wang, H.-Z.

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. T. Chan, Phys. Rev. B 83, 115124 (2011).
[CrossRef]

Zheng, H. H.

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. T. Chan, Phys. Rev. B 83, 115124 (2011).
[CrossRef]

Zhou, L.

X. Huang, L. Zhou, and C. T. Chan, Phys. Rev. B 74, 045123 (2006).
[CrossRef]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Nat. Mater. (1)

H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

J.-W. Dong, H. H. Zheng, Y. Lai, H.-Z. Wang, and C. T. Chan, Phys. Rev. B 83, 115124 (2011).
[CrossRef]

X. Huang, L. Zhou, and C. T. Chan, Phys. Rev. B 74, 045123 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

Physiol. Meas. (1)

G. Allan, L. Matti, and U. Gunther, Physiol. Meas. 24, 413 (2003).
[CrossRef]

Proc. R. Soc. A (1)

G. W. Milton and N.-A. P. Nicorovici, Proc. R. Soc. A 462, 3027 (2006).
[CrossRef]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef]

U. Leonhardt, Science 312, 1777 (2006).
[CrossRef]

Sov. Phys. Usp. (1)

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Induced dipole moment of the passive particle |P˜y(zd;ω)| and (b) response kernel |α(ω)/[14πα(ω)k02Wyyref(zd;ω)]| as functions of zd/d and frequency ω/ωc. The inset in (a) shows |P˜y(ω)| as a function of frequency ω/ωc at the value zd/d=0.08. The absorption of the slab is δ106.

Fig. 2.
Fig. 2.

Time evolution of the normalized induced dipole moment of the particle |Py(t)|/|P0| for different values of zd (distance between the particle and the slab) for δ=106, ts=1.

Fig. 3.
Fig. 3.

Time evolution of normalized induced dipole moment of the particle |Py(t)|/|P0| for different switch-on times of the current source ts. The absorption of the slab and the distance between the particle and the slab are δ=106, zd/d=0.08.

Fig. 4.
Fig. 4.

Time evolution of normalized induced dipole moment of the particle |Py(t)|/|P0| for different absorption parameters δ. We set ts=1, zd/d=0.08.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Py(zd;ω)=α(ω)14πα(ω)k02Wyyref(zd;ω)Eyext(zd;ω),
Py(zd;t)=12πdωeiωtPy(zd;ω)=limη012πdωeiωtP˜y(zd;ω)H(ω),

Metrics