Abstract

We propose a novel single-shot pulse-contrast measurement approach based on high-order quasi-phase-matching (QPM) cross correlation. It supports perfect contrast measurement with features of no artifacts, high resolution, and large temporal window. The prototype experiment based on the noncollinear third QPM with a beam crossing angle of 90 deg, using femtosecond Ti:sapphire laser pulses with a contrast of 107, demonstrates an artifacts-free measurement with a temporal window of 70ps and a resolution of 900fs.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Umstadter, Phys. Plasmas 8, 1774 (2001).
    [CrossRef]
  2. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, Opt. Express 20, 10807 (2012).
    [CrossRef]
  3. K.-H. Hong, B. Hou, J. A. Nees, E. Power, and G. A. Mourou, Appl. Phys. B 81, 447 (2005).
    [CrossRef]
  4. I. Jovanovic, C. Brown, C. Haefner, M. Shverdin, M. Taranowski, and C. P. J. Barty, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper JThD137.
  5. R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, Eur. Phys. J. D 55, 305 (2009).
    [CrossRef]
  6. D. F. Zhang, L. J. Qian, P. Yuan, H. Y. Zhu, S. C. Wen, and C. Xu, Opt. Lett. 33, 1969 (2008).
    [CrossRef]
  7. C. Dorrer, J. Bromage, and J. D. Zuegel, Opt. Express 16, 13534 (2008).
    [CrossRef]
  8. G. Priebe, K. A. Janulewicz, V. I. Redkorechev, J. Tümmler, and P. V. Nickles, Opt. Commun. 259, 848 (2006).
    [CrossRef]
  9. J. G. Ma, P. Yuan, Y. Z. Wang, D. F. Zhang, H. Y. Zhu, and L. J. Qian, Opt. Lett. 36, 978 (2011).
    [CrossRef]

2012

2011

2009

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, Eur. Phys. J. D 55, 305 (2009).
[CrossRef]

2008

2006

G. Priebe, K. A. Janulewicz, V. I. Redkorechev, J. Tümmler, and P. V. Nickles, Opt. Commun. 259, 848 (2006).
[CrossRef]

2005

K.-H. Hong, B. Hou, J. A. Nees, E. Power, and G. A. Mourou, Appl. Phys. B 81, 447 (2005).
[CrossRef]

2001

D. Umstadter, Phys. Plasmas 8, 1774 (2001).
[CrossRef]

Barty, C. P. J.

I. Jovanovic, C. Brown, C. Haefner, M. Shverdin, M. Taranowski, and C. P. J. Barty, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper JThD137.

Bromage, J.

Brown, C.

I. Jovanovic, C. Brown, C. Haefner, M. Shverdin, M. Taranowski, and C. P. J. Barty, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper JThD137.

Dorrer, C.

Haefner, C.

I. Jovanovic, C. Brown, C. Haefner, M. Shverdin, M. Taranowski, and C. P. J. Barty, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper JThD137.

Hegelich, B. M.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, Eur. Phys. J. D 55, 305 (2009).
[CrossRef]

Hong, K.-H.

K.-H. Hong, B. Hou, J. A. Nees, E. Power, and G. A. Mourou, Appl. Phys. B 81, 447 (2005).
[CrossRef]

Hou, B.

K.-H. Hong, B. Hou, J. A. Nees, E. Power, and G. A. Mourou, Appl. Phys. B 81, 447 (2005).
[CrossRef]

Janulewicz, K. A.

G. Priebe, K. A. Janulewicz, V. I. Redkorechev, J. Tümmler, and P. V. Nickles, Opt. Commun. 259, 848 (2006).
[CrossRef]

Jeong, T. M.

Johnson, R. P.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, Eur. Phys. J. D 55, 305 (2009).
[CrossRef]

Jovanovic, I.

I. Jovanovic, C. Brown, C. Haefner, M. Shverdin, M. Taranowski, and C. P. J. Barty, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper JThD137.

Lee, J.

Lee, S. K.

Ma, J. G.

Mourou, G. A.

K.-H. Hong, B. Hou, J. A. Nees, E. Power, and G. A. Mourou, Appl. Phys. B 81, 447 (2005).
[CrossRef]

Nees, J. A.

K.-H. Hong, B. Hou, J. A. Nees, E. Power, and G. A. Mourou, Appl. Phys. B 81, 447 (2005).
[CrossRef]

Nickles, P. V.

G. Priebe, K. A. Janulewicz, V. I. Redkorechev, J. Tümmler, and P. V. Nickles, Opt. Commun. 259, 848 (2006).
[CrossRef]

Power, E.

K.-H. Hong, B. Hou, J. A. Nees, E. Power, and G. A. Mourou, Appl. Phys. B 81, 447 (2005).
[CrossRef]

Priebe, G.

G. Priebe, K. A. Janulewicz, V. I. Redkorechev, J. Tümmler, and P. V. Nickles, Opt. Commun. 259, 848 (2006).
[CrossRef]

Qian, L. J.

Redkorechev, V. I.

G. Priebe, K. A. Janulewicz, V. I. Redkorechev, J. Tümmler, and P. V. Nickles, Opt. Commun. 259, 848 (2006).
[CrossRef]

Shah, R. C.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, Eur. Phys. J. D 55, 305 (2009).
[CrossRef]

Shimada, T.

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, Eur. Phys. J. D 55, 305 (2009).
[CrossRef]

Shverdin, M.

I. Jovanovic, C. Brown, C. Haefner, M. Shverdin, M. Taranowski, and C. P. J. Barty, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper JThD137.

Sung, J. H.

Taranowski, M.

I. Jovanovic, C. Brown, C. Haefner, M. Shverdin, M. Taranowski, and C. P. J. Barty, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper JThD137.

Tümmler, J.

G. Priebe, K. A. Janulewicz, V. I. Redkorechev, J. Tümmler, and P. V. Nickles, Opt. Commun. 259, 848 (2006).
[CrossRef]

Umstadter, D.

D. Umstadter, Phys. Plasmas 8, 1774 (2001).
[CrossRef]

Wang, Y. Z.

Wen, S. C.

Xu, C.

Yoon, J. W.

Yu, T. J.

Yuan, P.

Zhang, D. F.

Zhu, H. Y.

Zuegel, J. D.

Appl. Phys. B

K.-H. Hong, B. Hou, J. A. Nees, E. Power, and G. A. Mourou, Appl. Phys. B 81, 447 (2005).
[CrossRef]

Eur. Phys. J. D

R. C. Shah, R. P. Johnson, T. Shimada, and B. M. Hegelich, Eur. Phys. J. D 55, 305 (2009).
[CrossRef]

Opt. Commun.

G. Priebe, K. A. Janulewicz, V. I. Redkorechev, J. Tümmler, and P. V. Nickles, Opt. Commun. 259, 848 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Plasmas

D. Umstadter, Phys. Plasmas 8, 1774 (2001).
[CrossRef]

Other

I. Jovanovic, C. Brown, C. Haefner, M. Shverdin, M. Taranowski, and C. P. J. Barty, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2007), paper JThD137.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Calculated crossing angle and temporal window with a dependence on the grating period of PPLN. Dash-dotted (dashed) curve, the crossing angle under the first (third)-order QPM. Dotted (solid) curve, the temporal window under the first (third)-order QPM. Inset, SFG-based correlator with a PT pulse at 800 nm and a sampling pulse at 3.4 μm.

Fig. 2.
Fig. 2.

Schematic diagram of the three cross-correlation designs with high-order QPM. (a) THG configuration for measuring 1054 nm lasers. (b), (c)  OPA (SFG) configuration for measuring 800 nm lasers. Solid (dashed) lines represent the PT (sampling) pulse. Dotted lines represent the generated correlation signal. α (β) is the crossing angle between the PT pulse and sampling pulse (correlation signal).

Fig. 3.
Fig. 3.

Schematic diagram of the experimental setup. BS, beam splitter with a reflection of 80%; OD, a large glass plate with high reflection coating only in the center; SF, spectral filter; Amp, electrical amplifier. M1 (M2) is a cylindrical concave (concave) mirror with f=25cm. L1 (vertical collimation), L2 (horizontal imaging), and L3 (vertical focusing) are cylindrical lens with f=15, 20, and 3 cm, respectively.

Fig. 4.
Fig. 4.

Measured pulse contrast for the femtosecond Ti:sapphire laser (a) with (normalized to 100) and (b) without inserting a 2 mm thick etalon in the arm of sampling pulse. (c) Trace with attenuating the pulse under test by 3×107 times. Inset is the time-delayed measurement of preartifact.

Tables (1)

Tables Icon

Table 1. Specifications for the Three Designs in Fig. 2

Metrics