Abstract

We report on the combined action of a cw diode laser and a train of ultrashort pulses when each of them drives one step of the 5S-5P-5D two-photon transition in rubidium vapor. The fluorescence from the 6P3/2 state is detected for a fixed repetition rate of the femtosecond laser while the cw-laser frequency is scanned over the rubidium D2 lines. This scheme allows for a velocity selective spectroscopy in a large spectral range including the 5D3/2 and 5D5/2 states. The results are well described in a simplified frequency domain picture, considering the interaction of each velocity group with the cw laser and a single mode of the frequency comb.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer, 2005).
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef]
  3. M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008).
    [CrossRef]
  4. M. C. Stowe, A. Pe’er, and J. Ye, Phys. Rev. Lett. 100, 203001 (2008).
    [CrossRef]
  5. A. Marian, M. Stowe, J. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
    [CrossRef]
  6. J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Phys. Rev. A 81, 043840 (2010).
    [CrossRef]
  7. J. E. Stalnaker, S. L. Chen, M. E. Rowan, K. Nguyen, T. Pradhananga, C. A. Palm, and D. F. J. Kimball, “Velocity-selective direct frequency-comb spectroscopy of atomic vapors,” http://www.arxiv.org/physics.atom-ph/arXiv:1206.0999v1 .
  8. D. Aumiler, T. Ban, H. Skenderović, and G. Pichler, Phys. Rev. Lett. 95, 233001 (2005).
    [CrossRef]
  9. M. P. Moreno and S. S. Vianna, J. Opt. Soc. Am. B 28, 2066 (2011).
    [CrossRef]
  10. J. E. Bjorkholm and P. F. Liao, Phys. Rev. A 14, 751 (1976).
    [CrossRef]

2011 (1)

2010 (1)

J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Phys. Rev. A 81, 043840 (2010).
[CrossRef]

2008 (2)

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008).
[CrossRef]

M. C. Stowe, A. Pe’er, and J. Ye, Phys. Rev. Lett. 100, 203001 (2008).
[CrossRef]

2005 (1)

D. Aumiler, T. Ban, H. Skenderović, and G. Pichler, Phys. Rev. Lett. 95, 233001 (2005).
[CrossRef]

2004 (1)

A. Marian, M. Stowe, J. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
[CrossRef]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef]

1976 (1)

J. E. Bjorkholm and P. F. Liao, Phys. Rev. A 14, 751 (1976).
[CrossRef]

Aumiler, D.

D. Aumiler, T. Ban, H. Skenderović, and G. Pichler, Phys. Rev. Lett. 95, 233001 (2005).
[CrossRef]

Ban, T.

D. Aumiler, T. Ban, H. Skenderović, and G. Pichler, Phys. Rev. Lett. 95, 233001 (2005).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm and P. F. Liao, Phys. Rev. A 14, 751 (1976).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef]

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer, 2005).

Diddams, S. A.

J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Phys. Rev. A 81, 043840 (2010).
[CrossRef]

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef]

Felinto, D.

A. Marian, M. Stowe, J. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
[CrossRef]

Fortier, T. M.

J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Phys. Rev. A 81, 043840 (2010).
[CrossRef]

Gerginov, V.

J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Phys. Rev. A 81, 043840 (2010).
[CrossRef]

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008).
[CrossRef]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef]

Hollberg, L.

J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Phys. Rev. A 81, 043840 (2010).
[CrossRef]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef]

Lawall, J.

A. Marian, M. Stowe, J. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
[CrossRef]

Liao, P. F.

J. E. Bjorkholm and P. F. Liao, Phys. Rev. A 14, 751 (1976).
[CrossRef]

Marian, A.

A. Marian, M. Stowe, J. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
[CrossRef]

Mbele, V.

J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Phys. Rev. A 81, 043840 (2010).
[CrossRef]

Moreno, M. P.

Pe’er, A.

M. C. Stowe, A. Pe’er, and J. Ye, Phys. Rev. Lett. 100, 203001 (2008).
[CrossRef]

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008).
[CrossRef]

Pichler, G.

D. Aumiler, T. Ban, H. Skenderović, and G. Pichler, Phys. Rev. Lett. 95, 233001 (2005).
[CrossRef]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef]

Skenderovic, H.

D. Aumiler, T. Ban, H. Skenderović, and G. Pichler, Phys. Rev. Lett. 95, 233001 (2005).
[CrossRef]

Stalnaker, J. E.

J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Phys. Rev. A 81, 043840 (2010).
[CrossRef]

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef]

Stowe, M.

A. Marian, M. Stowe, J. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
[CrossRef]

Stowe, M. C.

M. C. Stowe, A. Pe’er, and J. Ye, Phys. Rev. Lett. 100, 203001 (2008).
[CrossRef]

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008).
[CrossRef]

Tanner, C. E.

J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Phys. Rev. A 81, 043840 (2010).
[CrossRef]

Thorpe, M. J.

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008).
[CrossRef]

Vianna, S. S.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef]

Ye, J.

M. C. Stowe, A. Pe’er, and J. Ye, Phys. Rev. Lett. 100, 203001 (2008).
[CrossRef]

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008).
[CrossRef]

A. Marian, M. Stowe, J. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
[CrossRef]

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer, 2005).

Adv. At. Mol. Opt. Phys. (1)

M. C. Stowe, M. J. Thorpe, A. Pe’er, J. Ye, J. E. Stalnaker, V. Gerginov, and S. A. Diddams, Adv. At. Mol. Opt. Phys. 55, 1 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys. Rev. A (2)

J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Phys. Rev. A 81, 043840 (2010).
[CrossRef]

J. E. Bjorkholm and P. F. Liao, Phys. Rev. A 14, 751 (1976).
[CrossRef]

Phys. Rev. Lett. (2)

D. Aumiler, T. Ban, H. Skenderović, and G. Pichler, Phys. Rev. Lett. 95, 233001 (2005).
[CrossRef]

M. C. Stowe, A. Pe’er, and J. Ye, Phys. Rev. Lett. 100, 203001 (2008).
[CrossRef]

Science (2)

A. Marian, M. Stowe, J. Lawall, D. Felinto, and J. Ye, Science 306, 2063 (2004).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef]

Other (2)

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer, 2005).

J. E. Stalnaker, S. L. Chen, M. E. Rowan, K. Nguyen, T. Pradhananga, C. A. Palm, and D. F. J. Kimball, “Velocity-selective direct frequency-comb spectroscopy of atomic vapors,” http://www.arxiv.org/physics.atom-ph/arXiv:1206.0999v1 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic representation of the energy levels of Rb, where ωcw represents the diode frequency and ωm and ωm are two distinct modes of the frequency comb. (b) Experimental setup. The components are the following: PBS, polarizing beam splitter (rejection rate>103); PMT, photomultiplier tube; PD, photodetector; L, lens; F, filter.

Fig. 2.
Fig. 2.

Fluorescence from the 6P3/25S1/2 decay as a function of the diode laser frequency for the four D2 Doppler lines. The saturated absorption signal (upper curve) is detected simultaneously.

Fig. 3.
Fig. 3.

(a) Fluorescence at 420 nm as a function of the diode laser frequency. The diode transmission after the Rb cell (blue curve) is detected simultaneously. Zooms of the regions inside the two rectangles in (a) for excitation from the hyperfine ground states, (b) F=2 of Rb87, and (c) F=3 of Rb85. The numbers at the peaks denote the hyperfine final state of the transition.

Fig. 4.
Fig. 4.

(a)–(d) Calculated population of level |3, ρ33calc(δ), and (e)–(h) experimental results for the fluorescence at 420 nm, as a function of the diode frequency, for the four D2 Doppler lines.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ33(F,F,F)(δ)=ρ33(Δ,δ)π0.6ΔDe(Δ/0.6ΔD)2dΔ,

Metrics