Abstract

Laser-induced damage in the nanosecond domain has been connected to the heating and breakdown of local defects within the thin film and the various interfaces. Within the femtosecond regime, the damaging events can be traced back to multiphoton-based excitation into the conduction band. When critical electron density is exceeded, an optical breakdown will occur. In this Letter we report on evidence that two-photon absorption also significantly triggers laser-induced damage in Ta2O5 thin films at 532 nm and 8 ns pulse duration. For experimental verification, single layers of Ta2O5/SiO2 mixtures have been analyzed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Papernov and A. W. Schmid, Appl. Phys. 97, 114906 (2005).
    [CrossRef]
  2. B. C. Stuart, M. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Proc. SPIE 2714, 616 (1996).
  3. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
    [CrossRef]
  4. M. Lappschies, M. Jupé, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuA7.
  5. M. Mende, S. Guenster, H. Ehlers, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (Optical Society of America, 2010), paper ThA4.
  6. G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).
    [CrossRef]
  7. U. Willamowski, D. Ristau, and E. Welsch, Appl. Opt. 37, 8362 (1998).
    [CrossRef]
  8. I. Balasa, H. Blaschke, L. Jensen, and D. Ristau, Proc. SPIE 8190, 81901T (2011).
  9. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
  10. W. L. Smith, Opt. Eng. 17, 175489 (1978).
    [CrossRef]
  11. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, Opt. Express 17, 12269 (2009).
    [CrossRef]
  12. L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, Rev. Sci. Instrum. 78, 103105 (2007).
    [CrossRef]

2011

I. Balasa, H. Blaschke, L. Jensen, and D. Ristau, Proc. SPIE 8190, 81901T (2011).

2009

2007

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

2005

S. Papernov and A. W. Schmid, Appl. Phys. 97, 114906 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
[CrossRef]

1998

1996

B. C. Stuart, M. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Proc. SPIE 2714, 616 (1996).

1981

G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).
[CrossRef]

1978

W. L. Smith, Opt. Eng. 17, 175489 (1978).
[CrossRef]

1965

L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

Abeles, B.

G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).
[CrossRef]

Balasa, I.

I. Balasa, H. Blaschke, L. Jensen, and D. Ristau, Proc. SPIE 8190, 81901T (2011).

Bercegol, H.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Blaschke, H.

I. Balasa, H. Blaschke, L. Jensen, and D. Ristau, Proc. SPIE 8190, 81901T (2011).

Bouillet, S.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Brooks, B.

G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).
[CrossRef]

Cody, G. D.

G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).
[CrossRef]

Courchinoux, R.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Donval, T.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Ehlers, H.

M. Mende, S. Guenster, H. Ehlers, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (Optical Society of America, 2010), paper ThA4.

Feit, M.

B. C. Stuart, M. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Proc. SPIE 2714, 616 (1996).

Goldstein, Y.

G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).
[CrossRef]

Guenster, S.

M. Mende, S. Guenster, H. Ehlers, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (Optical Society of America, 2010), paper ThA4.

Herman, S.

B. C. Stuart, M. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Proc. SPIE 2714, 616 (1996).

Jensen, L.

I. Balasa, H. Blaschke, L. Jensen, and D. Ristau, Proc. SPIE 8190, 81901T (2011).

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, Opt. Express 17, 12269 (2009).
[CrossRef]

Josse, M.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Jupé, M.

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, Opt. Express 17, 12269 (2009).
[CrossRef]

M. Lappschies, M. Jupé, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuA7.

Keldysh, L. V.

L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

Lamaignere, L.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Lappschies, M.

M. Lappschies, M. Jupé, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuA7.

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Melninkaitis, A.

Mende, M.

M. Mende, S. Guenster, H. Ehlers, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (Optical Society of America, 2010), paper ThA4.

Mero, M.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Papernov, S.

S. Papernov and A. W. Schmid, Appl. Phys. 97, 114906 (2005).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Proc. SPIE 2714, 616 (1996).

Poncetta, J.-C.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Ristau, D.

I. Balasa, H. Blaschke, L. Jensen, and D. Ristau, Proc. SPIE 8190, 81901T (2011).

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, Opt. Express 17, 12269 (2009).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
[CrossRef]

U. Willamowski, D. Ristau, and E. Welsch, Appl. Opt. 37, 8362 (1998).
[CrossRef]

M. Lappschies, M. Jupé, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuA7.

M. Mende, S. Guenster, H. Ehlers, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (Optical Society of America, 2010), paper ThA4.

Rubenchik, A. M.

B. C. Stuart, M. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Proc. SPIE 2714, 616 (1996).

Rudolph, W.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Schmid, A. W.

S. Papernov and A. W. Schmid, Appl. Phys. 97, 114906 (2005).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Proc. SPIE 2714, 616 (1996).

Sirutkaitis, V.

Smith, W. L.

W. L. Smith, Opt. Eng. 17, 175489 (1978).
[CrossRef]

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Proc. SPIE 2714, 616 (1996).

Tiedje, T.

G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).
[CrossRef]

Welsch, E.

Willamowski, U.

Appl. Opt.

Appl. Phys.

S. Papernov and A. W. Schmid, Appl. Phys. 97, 114906 (2005).
[CrossRef]

Opt. Eng.

W. L. Smith, Opt. Eng. 17, 175489 (1978).
[CrossRef]

Opt. Express

Phys. Rev. B

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Phys. Rev. Lett.

G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981).
[CrossRef]

Proc. SPIE

I. Balasa, H. Blaschke, L. Jensen, and D. Ristau, Proc. SPIE 8190, 81901T (2011).

B. C. Stuart, M. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Proc. SPIE 2714, 616 (1996).

Rev. Sci. Instrum.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Sov. Phys. JETP

L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

Other

M. Lappschies, M. Jupé, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (CD) (Optical Society of America, 2007), paper TuA7.

M. Mende, S. Guenster, H. Ehlers, and D. Ristau, in Proceedings of Optical Interference Coatings (OIC), OSA Technical Digest (Optical Society of America, 2010), paper ThA4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Transmission spectra of single-layer mixtures of tantala and silica ranging from pure silica to pure tantala. Optical thickness: 2 λ / 4 at 1064 nm.

Fig. 2.
Fig. 2.

Absorptance of a tantala/silica single layer with a bandgap energy of 4.51 eV and a pure silica single layer with a bandgap of 7.4 eV. These are selected samples from the set displayed in Fig. 1.

Fig. 3.
Fig. 3.

Ionization rate as a function of intensity calculated according to Keldysh [9] in fused silica with a bandgap energy of 8.3 eV. Multi photon ionization rate of the orders 2 to 8 (top curve to bottom) are displayed associated with common laser wavelengths.

Fig. 4.
Fig. 4.

Laser-induced damage threshold of tantala/silica mixtures as a function of bandgap energy. Test parameters: 532 nm, 8 ns, 100 Hz, 10.000-on-1 protocol.

Fig. 5.
Fig. 5.

Damaged sites in (a) the 2PA region, (b), (c) the transition, and (d) the 3PA or defect-induced damage region.

Metrics