Abstract

We present a new flat-focal-field arrayed-waveguide grating (AWG) design that utilizes an integrated field-flattening lens placed in the second star coupler. The effective index difference between slab and lens region is obtained by introducing a thin silicon nitride (SiN) layer to a silicon oxynitride environment. Depending upon the SiN layer position, two different lens designs are implemented. As a proof of concept two 81-channel AWGs, one with and one without the lens, are designed, fabricated, and characterized for each lens design. The measurements show that the adjacent crosstalk at the peripheral channels is improved by 2 dB, an improvement which is predicted to become more pronounced for AWGs with higher number of output waveguides (e.g., 16dB for 200 output waveguides). Only 0.4 dB of extra excess loss is introduced by the lens.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Rowland, Philos. Mag. 16, 197 (1883).
    [CrossRef]
  2. N. Cvetojevic, J. S. Lawrence, S. C. Ellis, J. Bland-Hawthorn, R. Haynes, and A. Horton, Opt. Express 17, 18643 (2009).
    [CrossRef]
  3. B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, IEEE Photon. Technol. Lett. 24, 848 (2012).
    [CrossRef]
  4. C. H. F. Velzel, J. Opt. Soc. Am. 66, 346 (1976).
    [CrossRef]
  5. M. K. Smit and C. van Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
    [CrossRef]
  6. S. Lu, C. Yang, Y. Yan, G. Jin, Z. Zhou, W. H. Wong, and E. Y. B. Pun, Opt. Express 13, 9982 (2005).
    [CrossRef]
  7. R. Kingslake, Lens Design Fundamentals (Academic, 1978).
  8. N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, Opt. Lett. 36, 4629 (2011).
    [CrossRef]
  9. B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
    [CrossRef]

2012 (2)

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, IEEE Photon. Technol. Lett. 24, 848 (2012).
[CrossRef]

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

2011 (1)

2009 (1)

2005 (1)

1996 (1)

M. K. Smit and C. van Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

1976 (1)

1883 (1)

H. A. Rowland, Philos. Mag. 16, 197 (1883).
[CrossRef]

Akca, B. I.

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, IEEE Photon. Technol. Lett. 24, 848 (2012).
[CrossRef]

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

Baclig, A. C.

Bland-Hawthorn, J.

Caspers, P. J.

Chang, L.

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, IEEE Photon. Technol. Lett. 24, 848 (2012).
[CrossRef]

Choo-Smith, L. P.

Cvetojevic, N.

de Ridder, R. M.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, IEEE Photon. Technol. Lett. 24, 848 (2012).
[CrossRef]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, Opt. Lett. 36, 4629 (2011).
[CrossRef]

Driessen, A.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, Opt. Lett. 36, 4629 (2011).
[CrossRef]

Ellis, S. C.

Haynes, R.

Horton, A.

Ismail, N.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, Opt. Lett. 36, 4629 (2011).
[CrossRef]

Jin, G.

Kalkman, J.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

Kingslake, R.

R. Kingslake, Lens Design Fundamentals (Academic, 1978).

Lawrence, J. S.

Lu, S.

Nguyen, V. D.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

Pollnau, M.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, IEEE Photon. Technol. Lett. 24, 848 (2012).
[CrossRef]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, Opt. Lett. 36, 4629 (2011).
[CrossRef]

Pun, E. Y. B.

Puppels, G. J.

Rowland, H. A.

H. A. Rowland, Philos. Mag. 16, 197 (1883).
[CrossRef]

Sengo, G.

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, IEEE Photon. Technol. Lett. 24, 848 (2012).
[CrossRef]

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

Smit, M. K.

M. K. Smit and C. van Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

Sun, F.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

van Dam, C.

M. K. Smit and C. van Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

van Leeuwen, T. G.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

Velzel, C. H. F.

Wong, W. H.

Worhoff, K.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

Wörhoff, K.

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, IEEE Photon. Technol. Lett. 24, 848 (2012).
[CrossRef]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, Opt. Lett. 36, 4629 (2011).
[CrossRef]

Yan, Y.

Yang, C.

Zhou, Z.

IEEE J. Sel. Top. Quantum Electron. (2)

M. K. Smit and C. van Dam, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, T. G. van Leeuwen, A. Driessen, M. Pollnau, K. Worhoff, and R. M. de Ridder, IEEE J. Sel. Top. Quantum Electron. 18, 1223 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. I. Akca, L. Chang, G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, IEEE Photon. Technol. Lett. 24, 848 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Opt. Lett. (1)

Philos. Mag. (1)

H. A. Rowland, Philos. Mag. 16, 197 (1883).
[CrossRef]

Other (1)

R. Kingslake, Lens Design Fundamentals (Academic, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Focus shift (Δx) introduced by a parallel plate in a converging beam; t is the plate thickness, n1 and n2 are the refractive indices of the surrounding and plate layers, respectively, and (b) Petzval image surface and field-flattening lens with relevant parameters; Rr (centered at A) and Rf (centered at B) are the radii of curvature of the imaging system and field-flattening lens, respectively, Δx(y) is the horizontal deviation from the flat image plane, and da(y) is the focus shift.

Fig. 2.
Fig. 2.

(a) Field-flattening lens in the second star coupler of the AWG. Rr, Rs, and Rf are the radii of curvature of the Rowland circle, the slab region, and the lens, respectively, and (b) cross-section of the star coupler with SiN layer on top of the SiON layer, or (c) with SiN embedded between SiON layer. n1 and n2 are the effective refractive indices of the slab with and without SiN layer, respectively.

Fig. 3.
Fig. 3.

Simulated effect of using a nonoptimized flat output plane in an AWG. (a)–(c) 80-channel device, edge channels (1–3) of (a) the flat-output-plane AWG without optimization, and (b) the conventional AWG. (c) Comparison of the results given in (a) and (b) for the 2nd channel. (d) Increase in crosstalk and loss versus number of output channels.

Fig. 4.
Fig. 4.

Transmission measurement results for some edge channels of the AWGs realized in (a)–(c) the first and (d)–(f) the second fabrication run; (a), (d) with a non-optimized flat output plane; (b), (c) with a field-flattening lens where SiN layer on top of SiON layer, and (e), (f) with a field-flattening lens where SiN layer embedded between SiON layers; (c), (f) comparison of the results given in (a), (b) and (d), (e), respectively, for the 2nd channel.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t=(n2n2n1)Δx.
t(y)=(n2n2n1)da(y),
da(y)Δx(y)y22Rr,
t(y)=12y2[(n2n1)n2Rr].
Rf=(n2n1n2)Rr,

Metrics