Abstract

We report fabrication of smooth microlens arrays by focusing a nanojoule energy, high repetition rate femtosecond laser oscillator inside a polycarbonate sample. Heat accumulation at the laser focal point and subsequent material expansion leads to localized swelling at the sample surface that behaves as a microlens. By changing the depth of the laser focus in the sample, the focal length of the microlens can be controlled and varies from 40 to 80 μm while maintaining a high numerical aperture of 0.6. This fabrication technique is a single step, controllable, and economical process that can produce arrays of optically smooth microlenses.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wippermann, U. D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, Opt. Express 15, 6218 (2007).
    [CrossRef]
  2. P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, Rev. Sci. Instrum. 72, 3132 (2001).
    [CrossRef]
  3. C. O’Connell, R. Sherlock, and T. J. Glynn, Opt. Eng. 49, 014201 (2010).
    [CrossRef]
  4. K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, Appl. Opt. 42, 6349 (2003).
    [CrossRef]
  5. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
    [CrossRef]
  6. K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, Appl. Surf. Sci. 208, 159 (2003).
    [CrossRef]
  7. H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
    [CrossRef]
  8. Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, Appl. Phys. A 85, 11 (2006).
    [CrossRef]
  9. F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
    [CrossRef]
  10. T. Meunier, A. B. Villafranca, R. Bhardwaj, and A. Weck, Opt. Lett. 37, 3168 (2012).
    [CrossRef]
  11. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, Opt. Express 13, 4708 (2005).
    [CrossRef]

2012

2010

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

C. O’Connell, R. Sherlock, and T. J. Glynn, Opt. Eng. 49, 014201 (2010).
[CrossRef]

2009

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

2007

2006

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, Appl. Phys. A 85, 11 (2006).
[CrossRef]

2005

2003

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, Appl. Surf. Sci. 208, 159 (2003).
[CrossRef]

K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, Appl. Opt. 42, 6349 (2003).
[CrossRef]

2001

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

Arai, A. Y.

Baets, R.

K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, Appl. Opt. 42, 6349 (2003).
[CrossRef]

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, Appl. Surf. Sci. 208, 159 (2003).
[CrossRef]

Bhardwaj, R.

Bovatsek, J.

Bräuer, A.

Chai, Y. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Chen, F.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Chen, S. J.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Cheng, Y.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, Appl. Phys. A 85, 11 (2006).
[CrossRef]

Commander, L. G.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

Daele, P. V.

Dannberg, P.

Day, S. E.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

Eaton, S. M.

Glynn, T. J.

C. O’Connell, R. Sherlock, and T. J. Glynn, Opt. Eng. 49, 014201 (2010).
[CrossRef]

He, F.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Herman, P. R.

Hou, X.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Jiang, L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Lin, C. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Liu, H.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

McCabe, E. M.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

Meunier, T.

Midorikawa, K.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, Appl. Phys. A 85, 11 (2006).
[CrossRef]

Naessens, K.

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, Appl. Surf. Sci. 208, 159 (2003).
[CrossRef]

K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, Appl. Opt. 42, 6349 (2003).
[CrossRef]

O’Connell, C.

C. O’Connell, R. Sherlock, and T. J. Glynn, Opt. Eng. 49, 014201 (2010).
[CrossRef]

Ottevaere, H.

K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, Appl. Opt. 42, 6349 (2003).
[CrossRef]

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, Appl. Surf. Sci. 208, 159 (2003).
[CrossRef]

Qiao, L.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Selviah, D. R.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

Shah, L.

Sherlock, R.

C. O’Connell, R. Sherlock, and T. J. Glynn, Opt. Eng. 49, 014201 (2010).
[CrossRef]

Si, J.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Sinzinger, S.

Smith, P. J.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

Sugioka, K.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, Appl. Phys. A 85, 11 (2006).
[CrossRef]

Taylor, C. M.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

Thienpont, H.

Tsai, H. L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, Appl. Phys. A 85, 11 (2006).
[CrossRef]

Van Daele, P.

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, Appl. Surf. Sci. 208, 159 (2003).
[CrossRef]

Villafranca, A. B.

Wang, C.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Wang, X.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Weck, A.

Wippermann, F.

Wu, J.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Xiao, H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Xu, Z.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Yang, Q.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Yoshino, F.

Zeitner, U. D.

Zhang, D.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Zhang, H.

Appl. Opt.

Appl. Phys. A

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, Appl. Phys. A 85, 11 (2006).
[CrossRef]

Appl. Phys. Lett.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Appl. Surf. Sci.

K. Naessens, H. Ottevaere, P. Van Daele, and R. Baets, Appl. Surf. Sci. 208, 159 (2003).
[CrossRef]

Opt. Commun.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Opt. Eng.

C. O’Connell, R. Sherlock, and T. J. Glynn, Opt. Eng. 49, 014201 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM image of a single microlens formed by focusing 0.5 nJ, femtosecond pulses 85 μm below the polycarbonate surface during 1 s. Scale bar is 10 μm.

Fig. 2.
Fig. 2.

SEM image of a microlens array created by focusing the laser beam with a 40× aspheric lens 45 μm below the sample surface using 76×106 pulses with 0.5 nJ per pulse. Scale bar is 50 μm.

Fig. 3.
Fig. 3.

Image of the HeNe laser beam after going through one of the microlens, showing focusing of the laser beam to a point. Scale bar is 50 μm.

Fig. 4.
Fig. 4.

Line profile from Fig. 3, showing focusing of the laser beam to a size of 0.92 μm (Full width at half-maximum).

Fig. 5.
Fig. 5.

Optical microscope images of three microlenses created by focusing the laser beam at depths of (a) 85μm, (b) 60μm, and (c) 45μm in the sample and resulting in microlens diameters of (a) 96 μm, (b) 63 μm, and (c) 50 μm. Pictures were taken with the optical microscope focus at the bottom of the lens, i.e., at the sample surface.

Fig. 6.
Fig. 6.

Evolution of the focal length and the numerical aperture of microlenses with microlens diameter.

Metrics