Abstract

This Letter presents a crystalline silicon thin film solar cell model with Si nanowire arrays surface decoration and metallic nanostructure patterns on the back reflector. The nanostructured Ag back reflector can significantly enhance the absorption in the near-infrared spectrum. Furthermore, by inserting a ZnO:Al layer between the silicon substrate and nanostructured Ag back reflector, the absorption loss in the Ag back reflector can be clearly depressed, contributing to a maximum Jsc of 28.4mA/cm2. A photocurrent enhancement of 22% is achieved compared with a SiNW solar cell with a planar Ag back reflector.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing two-level hierarchical particles for thin-film solar cells

Shiwei Zhou, Xiaodong Hunang, Qing Li, and Yi Min Xie
Opt. Express 21(S2) A285-A294 (2013)

Enhanced optical absorption in nanohole-textured silicon thin-film solar cells with rear-located metal particles

Yankun Chen, Weihua Han, and Fuhua Yang
Opt. Lett. 38(19) 3973-3975 (2013)

Design of nanostructured plasmonic back contacts for thin-film silicon solar cells

Ulrich W. Paetzold, Etienne Moulin, Bart E. Pieters, Reinhard Carius, and Uwe Rau
Opt. Express 19(S6) A1219-A1230 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription