Abstract

A method for the full determination of the third-order nonlinear coherent anti-Stokes Raman scattering (CARS) susceptibility is presented, which relies on phase control of a single ultrabroadband femtosecond laser pulse. A narrowband phase gate is scanned to perform double quadrature spectral interferometry, which reveals amplitude and phase of a multiplex CARS field. A single calibration measurement in a nonresonant sample allows for the characterization of the susceptibility in amplitude and phase. This scheme is demonstrated experimentally for the fingerprint region of toluene.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  2. C. Pohling, T. Buckup, and M. Motzkus, J. Biomed. Opt. 16, 021105 (2011).
    [CrossRef]
  3. A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, J. Raman Spectrosc. 42, 1859 (2011).
    [CrossRef]
  4. Y. Liu, Y. J. Lee, and M. T. Cicerone, J. Raman Spectrosc. 40, 726 (2009).
    [CrossRef]
  5. B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
    [CrossRef]
  6. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Opt. Express 16, 15863 (2008).
    [CrossRef]
  7. B. von Vacano, T. Buckup, and M. Motzkus, Opt. Lett. 31, 2495 (2006).
    [CrossRef]
  8. A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
    [CrossRef]
  9. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, Opt. Lett. 31, 1872 (2006).
    [CrossRef]
  10. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Phys. Rev. Lett. 103, 043905 (2009).
    [CrossRef]
  11. N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
    [CrossRef]
  12. B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
    [CrossRef]
  13. S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
    [CrossRef]
  14. Y. Silberberg, Annu. Rev. Phys. Chem. 60, 277 (2009).
    [CrossRef]
  15. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. 92, 171116 (2008).
  16. A. Wipfler, T. Buckup, and M. Motzkus, Appl. Phys. Lett. 100, 071102 (2012).
    [CrossRef]
  17. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]

2012 (1)

A. Wipfler, T. Buckup, and M. Motzkus, Appl. Phys. Lett. 100, 071102 (2012).
[CrossRef]

2011 (2)

C. Pohling, T. Buckup, and M. Motzkus, J. Biomed. Opt. 16, 021105 (2011).
[CrossRef]

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, J. Raman Spectrosc. 42, 1859 (2011).
[CrossRef]

2009 (3)

Y. Liu, Y. J. Lee, and M. T. Cicerone, J. Raman Spectrosc. 40, 726 (2009).
[CrossRef]

Y. Silberberg, Annu. Rev. Phys. Chem. 60, 277 (2009).
[CrossRef]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef]

2008 (2)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. 92, 171116 (2008).

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Opt. Express 16, 15863 (2008).
[CrossRef]

2007 (1)

B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
[CrossRef]

2006 (4)

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, Opt. Lett. 31, 1872 (2006).
[CrossRef]

B. von Vacano, T. Buckup, and M. Motzkus, Opt. Lett. 31, 2495 (2006).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
[CrossRef]

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
[CrossRef]

2002 (2)

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

1995 (1)

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

Buckup, T.

A. Wipfler, T. Buckup, and M. Motzkus, Appl. Phys. Lett. 100, 071102 (2012).
[CrossRef]

C. Pohling, T. Buckup, and M. Motzkus, J. Biomed. Opt. 16, 021105 (2011).
[CrossRef]

B. von Vacano, T. Buckup, and M. Motzkus, Opt. Lett. 31, 2495 (2006).
[CrossRef]

Caster, A. G.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
[CrossRef]

Chériaux, G.

Cicerone, M. T.

Y. Liu, Y. J. Lee, and M. T. Cicerone, J. Raman Spectrosc. 40, 726 (2009).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef]

Evans, C. L.

Ganikhanov, F.

Herek, J. L.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, J. Raman Spectrosc. 42, 1859 (2011).
[CrossRef]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Opt. Express 16, 15863 (2008).
[CrossRef]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Jafarpour, A.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, J. Raman Spectrosc. 42, 1859 (2011).
[CrossRef]

Joffre, M.

Jurna, M.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, J. Raman Spectrosc. 42, 1859 (2011).
[CrossRef]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Opt. Express 16, 15863 (2008).
[CrossRef]

Katz, O.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. 92, 171116 (2008).

Korterik, J. P.

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Opt. Express 16, 15863 (2008).
[CrossRef]

Lee, Y. J.

Y. Liu, Y. J. Lee, and M. T. Cicerone, J. Raman Spectrosc. 40, 726 (2009).
[CrossRef]

Leone, S. R.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
[CrossRef]

Lepetit, L.

Lim, S. H.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
[CrossRef]

Liu, Y.

Y. Liu, Y. J. Lee, and M. T. Cicerone, J. Raman Spectrosc. 40, 726 (2009).
[CrossRef]

Meyer, L.

B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
[CrossRef]

Motzkus, M.

A. Wipfler, T. Buckup, and M. Motzkus, Appl. Phys. Lett. 100, 071102 (2012).
[CrossRef]

C. Pohling, T. Buckup, and M. Motzkus, J. Biomed. Opt. 16, 021105 (2011).
[CrossRef]

B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
[CrossRef]

B. von Vacano, T. Buckup, and M. Motzkus, Opt. Lett. 31, 2495 (2006).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
[CrossRef]

Natan, A.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. 92, 171116 (2008).

Nicolet, O.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
[CrossRef]

Offerhaus, H. L.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, J. Raman Spectrosc. 42, 1859 (2011).
[CrossRef]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Opt. Express 16, 15863 (2008).
[CrossRef]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef]

Otto, C.

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Opt. Express 16, 15863 (2008).
[CrossRef]

Pohling, C.

C. Pohling, T. Buckup, and M. Motzkus, J. Biomed. Opt. 16, 021105 (2011).
[CrossRef]

Rosenwaks, S.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. 92, 171116 (2008).

Saar, B. G.

Silberberg, Y.

Y. Silberberg, Annu. Rev. Phys. Chem. 60, 277 (2009).
[CrossRef]

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. 92, 171116 (2008).

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef]

van Rhijn, A. C. W.

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, J. Raman Spectrosc. 42, 1859 (2011).
[CrossRef]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

von Vacano, B.

B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
[CrossRef]

B. von Vacano, T. Buckup, and M. Motzkus, Opt. Lett. 31, 2495 (2006).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
[CrossRef]

Wipfler, A.

A. Wipfler, T. Buckup, and M. Motzkus, Appl. Phys. Lett. 100, 071102 (2012).
[CrossRef]

Wohlleben, W.

B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
[CrossRef]

Xie, X. S.

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, Opt. Lett. 31, 1872 (2006).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

Y. Silberberg, Annu. Rev. Phys. Chem. 60, 277 (2009).
[CrossRef]

Appl. Phys. (1)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. 92, 171116 (2008).

Appl. Phys. Lett. (2)

A. Wipfler, T. Buckup, and M. Motzkus, Appl. Phys. Lett. 100, 071102 (2012).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J. Biomed. Opt. (1)

C. Pohling, T. Buckup, and M. Motzkus, J. Biomed. Opt. 16, 021105 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, J. Phys. Chem. B 110, 5196 (2006).
[CrossRef]

J. Raman Spectrosc. (4)

B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
[CrossRef]

A. C. W. van Rhijn, M. Jurna, A. Jafarpour, J. L. Herek, and H. L. Offerhaus, J. Raman Spectrosc. 42, 1859 (2011).
[CrossRef]

Y. Liu, Y. J. Lee, and M. T. Cicerone, J. Raman Spectrosc. 40, 726 (2009).
[CrossRef]

B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
[CrossRef]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Simulation illustrating the scheme: (a) Excitation spectrum represented as superposition of a narrow (lower gray curve) and a broadband (upper black curve) portion. (b) CARS electrical fields generated by the broadband (black curve) and narrowband portion (gray curve) assuming a molecular system with several Lorentzian lines and a nonresonant background. (c) Detected signals for four different phases of the narrowband portion needed for the DQSI operation. The spectra are shifted vertically for clarity. (d) Extracted amplitude (upper black curve) and phase (lower red curve) using DQSI.

Fig. 2.
Fig. 2.

Measurement of the susceptibility for toluene. (a) Processed measurements for toluene. (b) Processed measurements for glass (coverslip). The amplitude is shown with a lower black curve and the phase with a upper red curve.

Fig. 3.
Fig. 3.

Extracted phase and amplitude of the susceptibility of toluene. (a) Normalized and phase-corrected CARS field in amplitude (lower black curve) and phase (upper red curve). (b) Modulus of the imaginary part (upper gray curve), calculated from the data in (a), is compared with the spontaneous Raman spectrum (lower black curve) measured with a commercial Raman spectrometer.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

|ECARS,n(ω)|=14|ECARS,b(ω)|×[(S(ω)φn=π/2S(ω)φn=π/2)2+(S(ω)φn=πS(ω)φn=0)2]1/2,
φ=arctan[s(ω)φn=π/2s(ω)φn=π/2s(ω)φn=0s(ω)φn=π],

Metrics