Abstract

We experimentally demonstrate dispersion engineering of slow light photonic crystal (PhC) waveguides using selective infiltration of the first two rows of air holes with high index ionic liquids. The infiltrated PhC waveguide exhibits a dispersion window of 3 nm with a nearly constant group velocity of c/80 that depends on the liquid physical properties. We investigate how the effective refractive index changes in time due to the dynamics of the liquids in the holes. This demonstration highlights the versatility, flexibility, and tunability offered by optofluidics in PhC circuits.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

» Media 1: AVI (174 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription