Abstract

Polarization demultiplexing and multiplexing by means of conical refraction is proposed to increase the channel capacity for free-space optical communication applications. The proposed technique is based on the forward-backward optical transform occurring when a light beam propagates consecutively along the optic axes of two identical biaxial crystals with opposite orientations of their conical refraction characteristic vectors. We present an experimental proof of usefulness of the conical refraction demultiplexing and multiplexing technique by increasing in one order of magnitude the channel capacity at optical frequencies in a propagation distance of 4 m.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Mukherjee, IEEE J. Select. Areas Commun. 18, 1810 (2000).
    [CrossRef]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
    [CrossRef]
  3. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
    [CrossRef]
  4. S. Slussarenko, E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, J. Opt. Soc. Am. A 28, 61 (2011).
    [CrossRef]
  5. A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, J. Opt. 13, 064018 (2011).
    [CrossRef]
  6. Z. Wang, N. Zhang, and X.-C. Yuan, Opt. Express 19, 482 (2011).
    [CrossRef]
  7. B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
    [CrossRef]
  8. S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. J. Padgett, New J. Phys. 6, 103 (2004).
    [CrossRef]
  9. A. M. Belskii and A. P. Khapalyuk, Opt. Spectrosc. 44, 436 (1978).
  10. A. M. Belsky and M. A. Stepanov, Opt. Commun. 167, 1 (1999).
    [CrossRef]
  11. M. V. Berry and M. R. Jeffrey, Prog. Opt. 50, 13 (2007).
    [CrossRef]
  12. T. K. Kalkandjiev and M. Bursukova, Proc. SPIE 6994, 69940B (2008).
    [CrossRef]
  13. M. V. Berry, J. Opt. 12, 075704 (2010).
    [CrossRef]
  14. A. Abdolvand, App. Phys. B 103, 281 (2011).
    [CrossRef]
  15. A. Abdolvand, K. G. Wilcox, T. K. Kalkandjiev, and E. U. Rafailov, Opt. Express 18, 2753 (2010).
    [CrossRef]
  16. A. Turpin, “Cascaded conical refraction,” Master’s thesis (Universitat Politécnica de Catalunya (UPC), Barcelona, 2011), http://upcommons.upc.edu/pfc/handle/2099.1/13007 .

2011 (4)

2010 (2)

2008 (2)

T. K. Kalkandjiev and M. Bursukova, Proc. SPIE 6994, 69940B (2008).
[CrossRef]

B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
[CrossRef]

2007 (1)

M. V. Berry and M. R. Jeffrey, Prog. Opt. 50, 13 (2007).
[CrossRef]

2004 (2)

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. J. Padgett, New J. Phys. 6, 103 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
[CrossRef]

2000 (1)

B. Mukherjee, IEEE J. Select. Areas Commun. 18, 1810 (2000).
[CrossRef]

1999 (1)

A. M. Belsky and M. A. Stepanov, Opt. Commun. 167, 1 (1999).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

1978 (1)

A. M. Belskii and A. P. Khapalyuk, Opt. Spectrosc. 44, 436 (1978).

Abdolvand, A.

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Barnett, S. M.

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
[CrossRef]

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. J. Padgett, New J. Phys. 6, 103 (2004).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Belskii, A. M.

A. M. Belskii and A. P. Khapalyuk, Opt. Spectrosc. 44, 436 (1978).

Belsky, A. M.

A. M. Belsky and M. A. Stepanov, Opt. Commun. 167, 1 (1999).
[CrossRef]

Berry, M. V.

M. V. Berry, J. Opt. 12, 075704 (2010).
[CrossRef]

M. V. Berry and M. R. Jeffrey, Prog. Opt. 50, 13 (2007).
[CrossRef]

Boffi, P.

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, J. Opt. 13, 064018 (2011).
[CrossRef]

Bursukova, M.

T. K. Kalkandjiev and M. Bursukova, Proc. SPIE 6994, 69940B (2008).
[CrossRef]

Courtial, J.

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. J. Padgett, New J. Phys. 6, 103 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
[CrossRef]

Franke-Arnold, S.

B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
[CrossRef]

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. J. Padgett, New J. Phys. 6, 103 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
[CrossRef]

Gatto, A.

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, J. Opt. 13, 064018 (2011).
[CrossRef]

Gibson, G.

Jack, B.

B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
[CrossRef]

Jeffrey, M. R.

M. V. Berry and M. R. Jeffrey, Prog. Opt. 50, 13 (2007).
[CrossRef]

Kalkandjiev, T. K.

Karimi, E.

Khapalyuk, A. P.

A. M. Belskii and A. P. Khapalyuk, Opt. Spectrosc. 44, 436 (1978).

Leach, J.

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. J. Padgett, New J. Phys. 6, 103 (2004).
[CrossRef]

Marrucci, L.

Martelli, P.

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, J. Opt. 13, 064018 (2011).
[CrossRef]

Martinelli, M.

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, J. Opt. 13, 064018 (2011).
[CrossRef]

Mukherjee, B.

B. Mukherjee, IEEE J. Select. Areas Commun. 18, 1810 (2000).
[CrossRef]

Padgett, M. J.

B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
[CrossRef]

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. J. Padgett, New J. Phys. 6, 103 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
[CrossRef]

Pas’ko, V.

Piccirillo, B.

Rafailov, E. U.

Santamato, E.

Slussarenko, S.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Stepanov, M. A.

A. M. Belsky and M. A. Stepanov, Opt. Commun. 167, 1 (1999).
[CrossRef]

Tacca, M.

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, J. Opt. 13, 064018 (2011).
[CrossRef]

Turpin, A.

A. Turpin, “Cascaded conical refraction,” Master’s thesis (Universitat Politécnica de Catalunya (UPC), Barcelona, 2011), http://upcommons.upc.edu/pfc/handle/2099.1/13007 .

Vasnetsov, M.

Wang, Z.

Wilcox, K. G.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Yao, E.

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. J. Padgett, New J. Phys. 6, 103 (2004).
[CrossRef]

Yuan, X.-C.

Zhang, N.

App. Phys. B (1)

A. Abdolvand, App. Phys. B 103, 281 (2011).
[CrossRef]

IEEE J. Select. Areas Commun. (1)

B. Mukherjee, IEEE J. Select. Areas Commun. 18, 1810 (2000).
[CrossRef]

J. Opt. (2)

A. Gatto, M. Tacca, P. Martelli, P. Boffi, and M. Martinelli, J. Opt. 13, 064018 (2011).
[CrossRef]

M. V. Berry, J. Opt. 12, 075704 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

New J. Phys. (2)

B. Jack, M. J. Padgett, and S. Franke-Arnold, New J. Phys. 10, 103013 (2008).
[CrossRef]

S. Franke-Arnold, S. M. Barnett, E. Yao, J. Leach, J. Courtial, and M. J. Padgett, New J. Phys. 6, 103 (2004).
[CrossRef]

Opt. Commun. (1)

A. M. Belsky and M. A. Stepanov, Opt. Commun. 167, 1 (1999).
[CrossRef]

Opt. Express (3)

Opt. Spectrosc. (1)

A. M. Belskii and A. P. Khapalyuk, Opt. Spectrosc. 44, 436 (1978).

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Proc. SPIE (1)

T. K. Kalkandjiev and M. Bursukova, Proc. SPIE 6994, 69940B (2008).
[CrossRef]

Prog. Opt. (1)

M. V. Berry and M. R. Jeffrey, Prog. Opt. 50, 13 (2007).
[CrossRef]

Other (1)

A. Turpin, “Cascaded conical refraction,” Master’s thesis (Universitat Politécnica de Catalunya (UPC), Barcelona, 2011), http://upcommons.upc.edu/pfc/handle/2099.1/13007 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Transverse intensity pattern registered at the focal plane for a circularly polarized input Gaussian beam after passing through a 28 mm long KGd ( WO 4 ) 2 biaxial crystal. Yellow double arrows illustrate the polarization distribution along the ring for vertical orientation of Λ⃗ . Dashed circles represent linearly polarized beams. (b) Degenerated two-cascade conical refraction configuration yielding a forward–backward transform of a circularly polarized input Gaussian beam. The ring plane coincides with the focal plane of the first lens. FL, focusing lens; CL, collimating lens; BC 1 , first biaxial crystal; BC 2 , second biaxial crystal.

Fig. 2.
Fig. 2.

Sketch of the polarization demultiplexing and multiplexing experimental setup based on conical refraction being used to increase the channel capacity of a FSOC system. The FSOC system is formed by the transmitter with its two identical biaxial crystals presenting opposite Λ⃗ vectors, a free-space propagation distance of 4 m, and the receiver with the third biaxial crystal. LP, linear polarizer; λ / 4 , quarter-wave plate; AAM, angular amplitude mask.

Fig. 3.
Fig. 3.

Experimental transverse intensity patterns (third row) and the corresponding integrated azimuthal intensities (fourth row) obtained by the receiver for multiplexer masks (first row) with 2 (a), 4 (b), 8 (c), and 12 (d) opened sectors. The second row shows the multiplexed beams at the entrance of the receiver.

Fig. 4.
Fig. 4.

Crosstalk (XT) between adjacent channels versus the closure angle θ (bottom axis) and versus the number of channels N (top axis) of the masks used. The red solid curve represents the exponential fitting to the experimental data. Uncertainty of the θ angle measurement was below 1°.

Metrics