Abstract

This Letter introduces an enhanced cavity-waveguide coupling architecture based upon slow-light engineering in a two-port photonic crystal system. After analyzing the system transmittance using coupled-mode theory, the system is probed experimentally and shown to have increased transmittance due to the enhanced cavity-waveguide coupling. Such a coupling architecture may facilitate next-generation planar lightwave circuitry such as onchip quantum information processing or high precision light-matter sensing applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 75, 3788 (1995).
    [CrossRef]
  2. P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. A 74, 043818 (2006).
    [CrossRef]
  3. S. H. Kwon, T. Sunner, M. Kamp, and A. Forchel, Opt. Express 16, 11709 (2008).
  4. G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, Opt. Express 12, 6624 (2004).
    [CrossRef]
  5. S. Frédérick, D. Dalacu, J. Lapointe, P. J. Poole, G. C. Aers, and R. L. Williams, Appl. Phys. Lett. 89, 091115 (2006).
  6. T. Krauss, Nature Photonics 2, 448 (2008).
    [CrossRef]
  7. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
    [CrossRef]
  8. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
    [CrossRef]
  9. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
    [CrossRef]
  10. S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

2010 (1)

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

2008 (2)

2006 (2)

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. A 74, 043818 (2006).
[CrossRef]

S. Frédérick, D. Dalacu, J. Lapointe, P. J. Poole, G. C. Aers, and R. L. Williams, Appl. Phys. Lett. 89, 091115 (2006).

2004 (1)

2001 (1)

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

1997 (1)

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

1995 (1)

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 75, 3788 (1995).
[CrossRef]

Aers, G. C.

S. Frédérick, D. Dalacu, J. Lapointe, P. J. Poole, G. C. Aers, and R. L. Williams, Appl. Phys. Lett. 89, 091115 (2006).

Anderson, D.

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

Bardinal, V.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

Benisty, H.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

Bennett, A. J.

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

Bermel, P.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Cassagne, D.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

Cirac, J. I.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 75, 3788 (1995).
[CrossRef]

Dalacu, D.

S. Frédérick, D. Dalacu, J. Lapointe, P. J. Poole, G. C. Aers, and R. L. Williams, Appl. Phys. Lett. 89, 091115 (2006).

De La Rue, R. M.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

Dewhurst, S. J.

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

Eillies, D. J.

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Farrer, I.

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

Forchel, A.

Frédérick, S.

S. Frédérick, D. Dalacu, J. Lapointe, P. J. Poole, G. C. Aers, and R. L. Williams, Appl. Phys. Lett. 89, 091115 (2006).

Gardiner, S. A.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 75, 3788 (1995).
[CrossRef]

Granados, D.

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Houdré, H.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

Joannopoulos, J. D.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. A 74, 043818 (2006).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Johnson, S. G.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. A 74, 043818 (2006).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
[CrossRef]

Jones, G. A. C.

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

Jouanin, C.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

Kamp, M.

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Kim, G. H.

Krauss, T.

T. Krauss, Nature Photonics 2, 448 (2008).
[CrossRef]

Krauss, T. F.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

Kwon, S. H.

Labilloy, D.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

Lapointe, J.

S. Frédérick, D. Dalacu, J. Lapointe, P. J. Poole, G. C. Aers, and R. L. Williams, Appl. Phys. Lett. 89, 091115 (2006).

Lee, Y. H.

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Notomi, M.

Oesterle, U.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

Patel, R. B.

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

Pellizzari, T.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 75, 3788 (1995).
[CrossRef]

Poole, P. J.

S. Frédérick, D. Dalacu, J. Lapointe, P. J. Poole, G. C. Aers, and R. L. Williams, Appl. Phys. Lett. 89, 091115 (2006).

Ritchie, D. A.

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

Rodriguez, A.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Shields, A. J.

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

Shinya, A.

Soljacic, M.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Sunner, T.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Weisbuch, C.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

Williams, R. L.

S. Frédérick, D. Dalacu, J. Lapointe, P. J. Poole, G. C. Aers, and R. L. Williams, Appl. Phys. Lett. 89, 091115 (2006).

Zoller, P.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 75, 3788 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

S. Frédérick, D. Dalacu, J. Lapointe, P. J. Poole, G. C. Aers, and R. L. Williams, Appl. Phys. Lett. 89, 091115 (2006).

S. J. Dewhurst, D. Granados, D. J. Eillies, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 96, 031109 (2010).

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Nature Photonics (1)

T. Krauss, Nature Photonics 2, 448 (2008).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (1)

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, H. Houdré, U. Oesterle, D. Cassagne, and C. Jouanin, Phys. Rev. Lett. 79, 4147 (1997).
[CrossRef]

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 75, 3788 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Scanning electron micrograph of the proposed cavity-waveguide system with local slow-light engineering implemented using reduced-radius in-line (RRIL) holes. (b) Idealized system for coupled-mode theory analysis. (c) Calculated transmittance as a function of the ratio of in-plane and vertical quality factors and the termination phase length.

Fig. 2.
Fig. 2.

Dispersion diagram of cavity-waveguide system. The system has been engineered so that input-output W1 waveguides have their fast-light symmetric modes resonant with the nanocavity while the slow-light symmetric modes of the RRIL-W1 waveguides are resonant with the nanocavity. Points 1 and 2 show where the nanocavity resonance intersects the W1 and RRIL-W1 symmetric modes.

Fig. 3.
Fig. 3.

Calculated dispersion diagram, measured vertical emission, and transmission results for (a) no RRIL holes, (b) r=0.15r0, (c) r=0.18r0, and (d) r=0.2r0. The dashed lines indicate the position of the symmetric and asymmetric curves for the preceding smaller RRIL hole sizes. Peaks in the vertical emission are due to out-of-slab resonances while peaks in the transmission are due to the cavity-waveguide coupling at the resonant wavelength. In (c), the reduction in the cavity’s vertical emission implies that the vertically excited emission is being emitted into the waveguides, while the transmission results show an increased transmission peak due to the increased waveguide-coupling inferred from the vertical emission results. The transmission in (d) disappears because there is no waveguide mode available for coupling.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

|t|2=sin4βd2(sin2βd2+τin/4τv)2
1Qsys=1Qv+4Qinsin2βd2,

Metrics