Abstract

In non-line-of-sight (NLOS) UV communication links using intensity modulation with direct detection, atmospheric turbulence-induced intensity fluctuations can significantly impair link performance. To mitigate turbulence-induced fading and, therefore, to improve the bit error rate (BER) performance, spatial diversity reception can be used over NLOS UV links, which involves the deployment of multiple receivers. The maximum-likelihood (ML) spatial diversity scheme is derived for spatially correlated NLOS UV links, and the influence of various fading correlation at different receivers on the BER performance is investigated. For the dual-receiver case, ML diversity detection is compared with equal gain combining and optimal combining schemes under different turbulence intensity conditions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Xiao, Y. Zuo, J. Wu, H. Guo, and J. Lin, Opt. Express 19, 17864 (2011).
    [CrossRef]
  2. X. Zhu and J. M. Kahn, IEEE Trans. Commun. 51, 1233 (2003).
    [CrossRef]
  3. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
  4. X. Zhu and J. M. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
    [CrossRef]
  5. M. Srinivasan and V. Vilnrotter, “Avalanche photodiode arrays for optical communication receivers,” NASA TWO Progress Rep. 42–144 (2001).
  6. M. M. Ibrahim and A. M. Ibrahim, Proc. IEEE Commun. 143, 369 (1996).
    [CrossRef]
  7. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
  8. J. Weinstock, J. Atmos. Sci. 35, 1022 (1978).
    [CrossRef]
  9. C. E. Coulman, J. Vernin, Y. Coqueugniot, and J. L. Caccia, Appl. Opt. 27, 155 (1988).
    [CrossRef]
  10. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978), Vol. 1–2.
  11. J. W. Goodman, Statistical Optics (Wiley, 1985).
  12. X. Zhu and J. M. Kahn, “Maximum-likelihood spatial-diversity reception on correlated turbulent free-space optical channels,” presented at the IEEE Conference on Global Communication, San Francisco, California, November 27–December 1, 2000.
  13. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, Proc. SPIE 8038, 8038J (2011).
    [CrossRef]
  14. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, J. Opt. Soc. Am. A 8, 1964 (1991).
    [CrossRef]
  15. G. L. Stuber, Principles of Mobile Communication, 3rd ed. (McGraw-Hill, 1995).
  16. M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels, 2nd ed. (Wiley, 2004).

2011 (2)

H. Xiao, Y. Zuo, J. Wu, H. Guo, and J. Lin, Opt. Express 19, 17864 (2011).
[CrossRef]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, Proc. SPIE 8038, 8038J (2011).
[CrossRef]

2003 (1)

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 51, 1233 (2003).
[CrossRef]

2002 (1)

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

1996 (1)

M. M. Ibrahim and A. M. Ibrahim, Proc. IEEE Commun. 143, 369 (1996).
[CrossRef]

1991 (1)

1988 (1)

1978 (1)

J. Weinstock, J. Atmos. Sci. 35, 1022 (1978).
[CrossRef]

Alouini, M. S.

M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels, 2nd ed. (Wiley, 2004).

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Caccia, J. L.

Chen, G.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, Proc. SPIE 8038, 8038J (2011).
[CrossRef]

Coqueugniot, Y.

Coulman, C. E.

Ding, H.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, Proc. SPIE 8038, 8038J (2011).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

Guo, H.

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Ibrahim, A. M.

M. M. Ibrahim and A. M. Ibrahim, Proc. IEEE Commun. 143, 369 (1996).
[CrossRef]

Ibrahim, M. M.

M. M. Ibrahim and A. M. Ibrahim, Proc. IEEE Commun. 143, 369 (1996).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978), Vol. 1–2.

Kahn, J. M.

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 51, 1233 (2003).
[CrossRef]

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

X. Zhu and J. M. Kahn, “Maximum-likelihood spatial-diversity reception on correlated turbulent free-space optical channels,” presented at the IEEE Conference on Global Communication, San Francisco, California, November 27–December 1, 2000.

Lin, J.

Luettgen, M. R.

Majumdar, A. K.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, Proc. SPIE 8038, 8038J (2011).
[CrossRef]

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Reilly, D. M.

Sadler, B. M.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, Proc. SPIE 8038, 8038J (2011).
[CrossRef]

Shapiro, J. H.

Simon, M. K.

M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels, 2nd ed. (Wiley, 2004).

Srinivasan, M.

M. Srinivasan and V. Vilnrotter, “Avalanche photodiode arrays for optical communication receivers,” NASA TWO Progress Rep. 42–144 (2001).

Stuber, G. L.

G. L. Stuber, Principles of Mobile Communication, 3rd ed. (McGraw-Hill, 1995).

Vernin, J.

Vilnrotter, V.

M. Srinivasan and V. Vilnrotter, “Avalanche photodiode arrays for optical communication receivers,” NASA TWO Progress Rep. 42–144 (2001).

Weinstock, J.

J. Weinstock, J. Atmos. Sci. 35, 1022 (1978).
[CrossRef]

Wu, J.

Xiao, H.

Xu, Z.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, Proc. SPIE 8038, 8038J (2011).
[CrossRef]

Zhu, X.

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 51, 1233 (2003).
[CrossRef]

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

X. Zhu and J. M. Kahn, “Maximum-likelihood spatial-diversity reception on correlated turbulent free-space optical channels,” presented at the IEEE Conference on Global Communication, San Francisco, California, November 27–December 1, 2000.

Zuo, Y.

Appl. Opt. (1)

IEEE Trans. Commun. (2)

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 51, 1233 (2003).
[CrossRef]

X. Zhu and J. M. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

J. Atmos. Sci. (1)

J. Weinstock, J. Atmos. Sci. 35, 1022 (1978).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Proc. IEEE Commun. (1)

M. M. Ibrahim and A. M. Ibrahim, Proc. IEEE Commun. 143, 369 (1996).
[CrossRef]

Proc. SPIE (1)

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, Proc. SPIE 8038, 8038J (2011).
[CrossRef]

Other (8)

G. L. Stuber, Principles of Mobile Communication, 3rd ed. (McGraw-Hill, 1995).

M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels, 2nd ed. (Wiley, 2004).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978), Vol. 1–2.

J. W. Goodman, Statistical Optics (Wiley, 1985).

X. Zhu and J. M. Kahn, “Maximum-likelihood spatial-diversity reception on correlated turbulent free-space optical channels,” presented at the IEEE Conference on Global Communication, San Francisco, California, November 27–December 1, 2000.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

M. Srinivasan and V. Vilnrotter, “Avalanche photodiode arrays for optical communication receivers,” NASA TWO Progress Rep. 42–144 (2001).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

N -branch reception on NLOS single-scatter channels with correlated atmospheric turbulence-induced fading.

Fig. 2.
Fig. 2.

BER performance over spatially correlated NLOS UV channels.

Fig. 3.
Fig. 3.

BER of dual-branch receiver versus average electrical SNR using ML detection and EGC and OC for different values of the refractive index structure parameter.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

C n 2 ( z ) = K 0 z 1 / 3 exp ( z / z 0 ) ,
σ R 2 = 1.23 C n 2 ( 2 π / λ ) 7 / 6 R 11 / 6 ,
σ L 2 [ 1 exp [ ( ρ 12 ρ 0 ) 5 / 3 ] exp [ ( ρ 1 N ρ 0 ) 5 / 3 ] exp [ ( ρ 21 ρ 0 ) 5 / 3 ] 1 exp [ ( ρ 2 N ρ 0 ) 5 / 3 ] exp [ ( ρ N 1 ρ 0 ) 5 / 3 ] exp [ ( ρ N 2 ρ 0 ) 5 / 3 ] 1 ] N × N ,
p ( i l ) = 1 2 π σ l i l exp { [ ln ( i l / i l 0 ) + σ l 2 / 2 ] 2 2 σ l 2 } ,
p ( i r | i l ) = 1 2 π σ L i r exp { [ ln ( i r / i r 0 ) + σ L 2 / 2 ] 2 2 σ L 2 } ,
p i r ( i r 1 , i r 2 , , i r N | i l ) = 1 ( 2 π ) N / 2 | C L S | 1 / 2 m = 1 N i r m · exp { 1 2 i r δ · ( C L S ) 1 · ( i r δ ) T } ,
i r δ = [ ( ln i r 1 i r 0 + σ L 2 2 ) ( ln i r 2 i r 0 + σ L 2 2 ) ( ln i r N i r 0 + σ L 2 2 ) ] ,
p I ( i r ) = p i r ( i r 1 , i r 2 , , i r N | i l ) p ( i l ) d i l = i l exp { [ ln ( i l / i l 0 ) + σ l 2 / 2 ] 2 2 σ l 2 1 2 i r δ · ( C L S ) 1 · ( i r δ ) T } ( 2 π ) ( N + 1 ) / 2 σ l i l | C L S | 1 / 2 m = 1 N i r m d i l .
p ( r / Off ) = exp [ m = 1 N r m 2 2 δ m 2 ] m = 1 N 1 2 π δ m 2 ,
p ( r / On ) = i r p I ( i r ) · exp [ m = 1 N ( r m M R i r m ) 2 2 δ m 2 ] · m = 1 N 1 2 π δ m 2 d i r .
p b = p ( Off ) · Λ ( r ) > 1 p ( r / Off ) d r + p ( On ) · Λ ( r ) < 1 p ( r / On ) d r ,
Λ ( r ) = p ( r / On ) p ( r / Off ) = i r p I ( i r ) · exp [ m = 1 N 2 r m M R i r m M 2 R 2 i r m 2 2 δ m 2 ] d i r .

Metrics