Abstract

Quantum-optical coherence tomography (QOCT) combines the principles of classical OCT with the correlation properties of entangled photon pairs [Phys. Rev. A 65, 053817 (2002)]. The standard QOCT configuration is based on the Hong–Ou–Mandel interferometer, which uses entangled photons propagating in separate interferometer arms. This noncollinear configuration imposes practical limitations, e.g., misalignment due to drift and low signal-to-noise. Here, we introduce and implement QOCT based on collinear entangled photons. It makes use of a two-photon Michelson interferometer and offers several advantages, such as simplicity, robustness, and adaptability.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 65, 053817 (2002).
    [CrossRef]
  2. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 91, 083601 (2003).
    [CrossRef]
  3. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Opt. Express 12, 1353 (2004).
    [CrossRef]
  4. M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
    [CrossRef]
  5. M. C. Booth, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 284, 2542 (2011).
    [CrossRef]
  6. B. I. Erkmen and J. H. Shapiro, Phys. Rev. A 74, 041601(R) (2006).
    [CrossRef]
  7. M.C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, Quantum Inf. Process. 10, 1 (2011).
    [CrossRef]
  8. D. Lopez-Mago and L. Novotny, Phys. Rev. A 86, 023820(2012).
    [CrossRef]
  9. A. Ling, A. Lamas-Linares, and C. Kurtsiefer, Phys. Rev. A 77, 043834 (2008).
    [CrossRef]
  10. M. W. Mitchell, Phys. Rev. A 79, 043835 (2009).
    [CrossRef]

2012 (1)

D. Lopez-Mago and L. Novotny, Phys. Rev. A 86, 023820(2012).
[CrossRef]

2011 (2)

M. C. Booth, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 284, 2542 (2011).
[CrossRef]

M.C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, Quantum Inf. Process. 10, 1 (2011).
[CrossRef]

2009 (2)

M. W. Mitchell, Phys. Rev. A 79, 043835 (2009).
[CrossRef]

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
[CrossRef]

2008 (1)

A. Ling, A. Lamas-Linares, and C. Kurtsiefer, Phys. Rev. A 77, 043834 (2008).
[CrossRef]

2006 (1)

B. I. Erkmen and J. H. Shapiro, Phys. Rev. A 74, 041601(R) (2006).
[CrossRef]

2004 (1)

2003 (1)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

2002 (1)

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Booth, M. C.

M. C. Booth, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 284, 2542 (2011).
[CrossRef]

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, Phys. Rev. A 74, 041601(R) (2006).
[CrossRef]

Goode, D. P.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
[CrossRef]

Kurtsiefer, C.

A. Ling, A. Lamas-Linares, and C. Kurtsiefer, Phys. Rev. A 77, 043834 (2008).
[CrossRef]

Lamas-Linares, A.

A. Ling, A. Lamas-Linares, and C. Kurtsiefer, Phys. Rev. A 77, 043834 (2008).
[CrossRef]

Ling, A.

A. Ling, A. Lamas-Linares, and C. Kurtsiefer, Phys. Rev. A 77, 043834 (2008).
[CrossRef]

Lopez-Mago, D.

D. Lopez-Mago and L. Novotny, Phys. Rev. A 86, 023820(2012).
[CrossRef]

Mitchell, M. W.

M. W. Mitchell, Phys. Rev. A 79, 043835 (2009).
[CrossRef]

Nasr, M. B.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Opt. Express 12, 1353 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Nguyen, N.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
[CrossRef]

Novotny, L.

D. Lopez-Mago and L. Novotny, Phys. Rev. A 86, 023820(2012).
[CrossRef]

Reinhard, B. M.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
[CrossRef]

Rong, G.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
[CrossRef]

Saleh, B. E. A.

M. C. Booth, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 284, 2542 (2011).
[CrossRef]

M.C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, Quantum Inf. Process. 10, 1 (2011).
[CrossRef]

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Opt. Express 12, 1353 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Sergienko, A. V.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Opt. Express 12, 1353 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Shapiro, J. H.

M.C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, Quantum Inf. Process. 10, 1 (2011).
[CrossRef]

B. I. Erkmen and J. H. Shapiro, Phys. Rev. A 74, 041601(R) (2006).
[CrossRef]

Teich, M. C.

M. C. Booth, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 284, 2542 (2011).
[CrossRef]

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Opt. Express 12, 1353 (2004).
[CrossRef]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 65, 053817 (2002).
[CrossRef]

Teich, M.C.

M.C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, Quantum Inf. Process. 10, 1 (2011).
[CrossRef]

Wong, F. N. C.

M.C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, Quantum Inf. Process. 10, 1 (2011).
[CrossRef]

Yang, L.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
[CrossRef]

Opt. Commun. (2)

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 282, 1154 (2009).
[CrossRef]

M. C. Booth, B. E. A. Saleh, and M. C. Teich, Opt. Commun. 284, 2542 (2011).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (5)

B. I. Erkmen and J. H. Shapiro, Phys. Rev. A 74, 041601(R) (2006).
[CrossRef]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. A 65, 053817 (2002).
[CrossRef]

D. Lopez-Mago and L. Novotny, Phys. Rev. A 86, 023820(2012).
[CrossRef]

A. Ling, A. Lamas-Linares, and C. Kurtsiefer, Phys. Rev. A 77, 043834 (2008).
[CrossRef]

M. W. Mitchell, Phys. Rev. A 79, 043835 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef]

Quantum Inf. Process. (1)

M.C. Teich, B. E. A. Saleh, F. N. C. Wong, and J. H. Shapiro, Quantum Inf. Process. 10, 1 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Standard configuration of QOCT based on a HOM interferometer. A laser pumps a nonlinear crystal (NLC) to generate noncollinear entangled photon pairs. The mirror (M) is translated and the coincidences C ( τ ) are monitored. (b) Example of a coincidence interferogram. D, detector; BS, beam splitter; τ , time delay.

Fig. 2.
Fig. 2.

(a) Implementation of QOCT with the two-photon Michelson interferometer. (b) Illustration of the four possibilities of pairwise photon propagation through the interferometer.

Fig. 3.
Fig. 3.

Experimental two-photon interferograms recorded with the Michelson interferometer. The sample consists of two partially reflecting interfaces separated by 110 nm. (a) Recorded coincidence rate M ( τ ) . (b) Resulting interferogram after low-pass filtering M ( τ ) . The illustration on the top depicts the sample consisting of two gold coated glass surfaces.

Fig. 4.
Fig. 4.

Fourier transform of the coincidence rate M ( τ ) in Fig. 3(a) demonstrating the spectral separation of the different terms in Eq. (3).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Λ 0 = d Ω | H ( ω 0 + Ω ) | 2 S ( Ω ) ,
Λ ( τ ) = d Ω H ( ω 0 + Ω ) H * ( ω 0 Ω ) S ( Ω ) e i Ω τ .
M ( τ ) M 0 + 2 Re { M 1 ( 2 τ ) } + 4 Re { M 2 ( τ ) e i ω 0 τ } + 2 Re { M 3 e i 2 ω 0 τ } ,
M 0 = d Ω ( 1 + | H ( ω 0 Ω ) | 2 ) ( 1 + | H ( ω 0 + Ω ) | 2 ) S ( Ω ) ,
M 1 ( τ ) = d Ω H ( ω 0 + Ω ) H * ( ω 0 Ω ) S ( Ω ) e i Ω τ ,
M 2 ( τ ) = d Ω ( 1 + | H ( ω 0 Ω ) | 2 ) H ( ω 0 + Ω ) S ( Ω ) e i Ω τ ,
M 3 = d Ω H ( ω 0 + Ω ) H ( ω 0 Ω ) S ( Ω ) .

Metrics