Abstract

Optical microcavities provide an intriguing platform for the development of low threshold microlasers based on nonlinear effects. Long photon lifetimes within the cavity translate to high circulating optical intensities, thereby reducing the lasing threshold. It is therefore possible to create lasers that can operate in complex environments. In the present work, we use a silica microsphere to demonstrate a cascaded Raman microlaser that operates in air and buffer with the first emission peak around 800 nm in both environments. As expected, the threshold in air is significantly lower than in buffer.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12 (2006).
    [CrossRef]
  2. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
    [CrossRef]
  3. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
    [CrossRef]
  4. H. S. Hsu, C. Cai, and A. M. Armani, Opt. Express 17, 23265 (2009).
    [CrossRef]
  5. B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
    [CrossRef]
  6. A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006).
    [CrossRef]
  7. H. B. Lin and A. J. Campillo, Opt. Commun. 133, 287 (1997).
    [CrossRef]
  8. L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
    [CrossRef]
  9. F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
    [CrossRef]
  10. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
    [CrossRef]
  11. M. Oxborrow, Laser Resonators and Beam Control IX 6452, J4520 (2007).
    [CrossRef]
  12. M. M. Koerner, L. A. Palacio, J. W. Wright, K. S. Schweitzer, B. D. Ray, and H. I. Petrache, Biophys. J. 101, 362 (2011).
    [CrossRef]
  13. A. Radi, J. Sanchez, E. Baldrich, and C. O’Sullivan, J. Am. Chem. Soc. 128, 117 (2006).
    [CrossRef]
  14. L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
    [CrossRef]
  15. H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
    [CrossRef]
  16. A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
    [CrossRef]

2011 (4)

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

M. M. Koerner, L. A. Palacio, J. W. Wright, K. S. Schweitzer, B. D. Ray, and H. I. Petrache, Biophys. J. 101, 362 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[CrossRef]

2010 (3)

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
[CrossRef]

2009 (1)

2007 (1)

M. Oxborrow, Laser Resonators and Beam Control IX 6452, J4520 (2007).
[CrossRef]

2006 (3)

A. Radi, J. Sanchez, E. Baldrich, and C. O’Sullivan, J. Am. Chem. Soc. 128, 117 (2006).
[CrossRef]

A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12 (2006).
[CrossRef]

2005 (1)

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

2003 (1)

2000 (1)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
[CrossRef]

1997 (1)

H. B. Lin and A. J. Campillo, Opt. Commun. 133, 287 (1997).
[CrossRef]

Armani, A. M.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

H. S. Hsu, C. Cai, and A. M. Armani, Opt. Express 17, 23265 (2009).
[CrossRef]

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Armani, D. K.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Bailey, R. C.

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

Baldrich, E.

A. Radi, J. Sanchez, E. Baldrich, and C. O’Sullivan, J. Am. Chem. Soc. 128, 117 (2006).
[CrossRef]

Benson, O.

A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006).
[CrossRef]

Cai, C.

Campillo, A. J.

H. B. Lin and A. J. Campillo, Opt. Commun. 133, 287 (1997).
[CrossRef]

Choi, H. S.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Dayani, Y.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[CrossRef]

Drücker, H.

F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
[CrossRef]

Feyerabend, F.

F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
[CrossRef]

Fischer, J.

F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
[CrossRef]

Freeman, L. M.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Gotzinger, S.

A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006).
[CrossRef]

Hare, J.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
[CrossRef]

Haroche, S.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
[CrossRef]

He, L. N.

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Holtz, J.

F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
[CrossRef]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[CrossRef]

Hort, N.

F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
[CrossRef]

Hsu, H. S.

Hunt, H. K.

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12 (2006).
[CrossRef]

Jahier, E.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
[CrossRef]

Kim, W.

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[CrossRef]

B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef]

Koerner, M. M.

M. M. Koerner, L. A. Palacio, J. W. Wright, K. S. Schweitzer, B. D. Ray, and H. I. Petrache, Biophys. J. 101, 362 (2011).
[CrossRef]

Krauter, H.

A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006).
[CrossRef]

Lefevre-Seguin, V.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
[CrossRef]

Li, S.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Lin, H. B.

H. B. Lin and A. J. Campillo, Opt. Commun. 133, 287 (1997).
[CrossRef]

Lissillour, F.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
[CrossRef]

Long, R.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
[CrossRef]

Malmstadt, N.

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12 (2006).
[CrossRef]

Mazzei, A.

A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006).
[CrossRef]

Min, B.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef]

O’Sullivan, C.

A. Radi, J. Sanchez, E. Baldrich, and C. O’Sullivan, J. Am. Chem. Soc. 128, 117 (2006).
[CrossRef]

Oxborrow, M.

M. Oxborrow, Laser Resonators and Beam Control IX 6452, J4520 (2007).
[CrossRef]

Ozdemir, K.

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Palacio, L. A.

M. M. Koerner, L. A. Palacio, J. W. Wright, K. S. Schweitzer, B. D. Ray, and H. I. Petrache, Biophys. J. 101, 362 (2011).
[CrossRef]

Petrache, H. I.

M. M. Koerner, L. A. Palacio, J. W. Wright, K. S. Schweitzer, B. D. Ray, and H. I. Petrache, Biophys. J. 101, 362 (2011).
[CrossRef]

Radi, A.

A. Radi, J. Sanchez, E. Baldrich, and C. O’Sullivan, J. Am. Chem. Soc. 128, 117 (2006).
[CrossRef]

Raimond, J. M.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
[CrossRef]

Ray, B. D.

M. M. Koerner, L. A. Palacio, J. W. Wright, K. S. Schweitzer, B. D. Ray, and H. I. Petrache, Biophys. J. 101, 362 (2011).
[CrossRef]

Sanchez, J.

A. Radi, J. Sanchez, E. Baldrich, and C. O’Sullivan, J. Am. Chem. Soc. 128, 117 (2006).
[CrossRef]

Schweitzer, K. S.

M. M. Koerner, L. A. Palacio, J. W. Wright, K. S. Schweitzer, B. D. Ray, and H. I. Petrache, Biophys. J. 101, 362 (2011).
[CrossRef]

Spillane, S. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

Vahala, K. J.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

B. Min, T. J. Kippenberg, and K. J. Vahala, Opt. Lett. 28, 1507 (2003).
[CrossRef]

Vogt, C.

F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
[CrossRef]

von Klitzing, W.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
[CrossRef]

Washburn, A. L.

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

Willumeit, R.

F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
[CrossRef]

Witte, F.

F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
[CrossRef]

Wright, J. W.

M. M. Koerner, L. A. Palacio, J. W. Wright, K. S. Schweitzer, B. D. Ray, and H. I. Petrache, Biophys. J. 101, 362 (2011).
[CrossRef]

Yang, L.

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Zhu, J. G.

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Acta Biomater. (1)

F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).
[CrossRef]

Analyst (1)

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, Appl. Phys. Lett. 87, 151118 (2005).
[CrossRef]

A. Mazzei, H. Krauter, O. Benson, and S. Gotzinger, Appl. Phys. Lett. 89, 101105 (2006).
[CrossRef]

L. M. Freeman, S. Li, Y. Dayani, H. S. Choi, N. Malmstadt, and A. M. Armani, Appl. Phys. Lett. 98, 143703 (2011).
[CrossRef]

Biophys. J. (1)

M. M. Koerner, L. A. Palacio, J. W. Wright, K. S. Schweitzer, B. D. Ray, and H. I. Petrache, Biophys. J. 101, 362 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

A. Radi, J. Sanchez, E. Baldrich, and C. O’Sullivan, J. Am. Chem. Soc. 128, 117 (2006).
[CrossRef]

J. Opt. B: Quant. Semiclass Opt. (1)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and S. Haroche, J. Opt. B: Quant. Semiclass Opt. 2, 204 (2000).
[CrossRef]

Laser Resonators and Beam Control IX (1)

M. Oxborrow, Laser Resonators and Beam Control IX 6452, J4520 (2007).
[CrossRef]

Nanoscale (1)

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef]

Nature Nanotechnol. (1)

L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, Nature Nanotechnol. 6, 428 (2011).
[CrossRef]

Opt. Commun. (1)

H. B. Lin and A. J. Campillo, Opt. Commun. 133, 287 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science 332, 555 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Scanning electron micrograph image of a 191 μm diameter microsphere. (b) Simulation results for effective mode volume versus environmental refractive index for a 190 μm diameter sphere. Mode volume increases significantly when the sphere is surrounded by buffer (n=1.341) rather than air (n=1).

Fig. 2.
Fig. 2.

Lasing in air. (a)–(d) The lasing peak intensity is plotted as a function of power going into the sphere for all four detected emission peaks. The threshold for (a)–(d) is 157, 220, 259, and 301 μW, respectively. Inset: lasing intensity graph showing four lasing peaks at 801, 829, 862, and 895 nm.

Fig. 3.
Fig. 3.

Plot of threshold versus peak number for two different experiments. Black squares represent results from a 189 μm (blue circles represent results from a 213 μm) diameter sphere with a Q of 1.3×108 (2E8). Experimental results agree well with the theoretical fit. Inset: slope efficiency for each lasing peak in Fig. 2, showing a decreasing trend in agreement with theory.

Fig. 4.
Fig. 4.

(a)–(b) Lasing intensity vs. input power in HEPES buffer for two lasing peaks. The threshold for (a)–(b) was 760 and 824 μW, respectively. Inset: the lasing spectra, showing the emission lines at 801 and 827 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Pthres=π2neff2λpλRVeffΓBgQeQT,R(1QT)2N2(N+22)2,(N:even)
Pthres=π2neff2λpλRVeffΓBgQeQT,R(1QT)2(N+12)3,(N:odd),

Metrics