Abstract

A proof-of-concept multiwindow fiber-optic sensor utilizing multiple particle plasmon resonance (PPR) of silver nanoparticles and gold nanorods separately on two unclad portions of the fiber for multianalyte detection is demonstrated. The detection is based on intensity interrogation of multiple wavelengths by a single detector. Time division multiplexing is employed to modulate the illumination of dual-wavelength LEDs to induce PPRs for simultaneous real-time and label-free monitoring of two types of biomolecular interactions. Preliminary results reveal that a refractive index resolution of 9×106RIU is achieved. Moreover, the measured intensities of two windows independently respond to their respective binding events. The potential of the sensor architecture with multiple sensing windows for cascaded, higher throughput, and multianalyte biochemical detection can be expected.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hutter and J. H. Fendler, Adv. Mater. 16, 1685 (2004).
    [CrossRef]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
    [CrossRef]
  3. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
    [CrossRef]
  4. S. Underwood and P. Mulvaney, Langmuir 10, 3427 (1994).
    [CrossRef]
  5. N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005).
    [CrossRef]
  6. C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, Anal. Chem. 70, 703 (1998).
    [CrossRef]
  7. J. Dostálek, H. Vaisocherová, and J. Homola, Sens. Actuators B 108, 758 (2005).
    [CrossRef]
  8. T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
    [CrossRef]
  9. Y. Yuan, L. Wang, and J. Huang, Sens. Actuators B 161, 269 (2012).
    [CrossRef]
  10. H. P. E. Stern and S. A. Mahmoud, Communication Systems: Analysis and Design (Prentice Hall, 2003).
  11. X. D. Hoa, A. G. Kirk, and M. Tabrizian, Biosens. Bioelectron. 23, 151 (2007).
    [CrossRef]
  12. S.-F. Cheng and L.-K. Chau, Anal. Chem. 75, 16 (2003).
    [CrossRef]
  13. C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
    [CrossRef]

2012 (1)

Y. Yuan, L. Wang, and J. Huang, Sens. Actuators B 161, 269 (2012).
[CrossRef]

2008 (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

2007 (2)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, Biosens. Bioelectron. 23, 151 (2007).
[CrossRef]

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

2006 (1)

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
[CrossRef]

2005 (2)

J. Dostálek, H. Vaisocherová, and J. Homola, Sens. Actuators B 108, 758 (2005).
[CrossRef]

N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005).
[CrossRef]

2004 (1)

E. Hutter and J. H. Fendler, Adv. Mater. 16, 1685 (2004).
[CrossRef]

2003 (1)

S.-F. Cheng and L.-K. Chau, Anal. Chem. 75, 16 (2003).
[CrossRef]

2002 (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
[CrossRef]

1998 (1)

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, Anal. Chem. 70, 703 (1998).
[CrossRef]

1994 (1)

S. Underwood and P. Mulvaney, Langmuir 10, 3427 (1994).
[CrossRef]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
[CrossRef]

Berger, C. E. H.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, Anal. Chem. 70, 703 (1998).
[CrossRef]

Beumer, T. A. M.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, Anal. Chem. 70, 703 (1998).
[CrossRef]

Chau, L.-K.

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

S.-F. Cheng and L.-K. Chau, Anal. Chem. 75, 16 (2003).
[CrossRef]

Chen, C.-D.

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

Cheng, S.-F.

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

S.-F. Cheng and L.-K. Chau, Anal. Chem. 75, 16 (2003).
[CrossRef]

Dostálek, J.

J. Dostálek, H. Vaisocherová, and J. Homola, Sens. Actuators B 108, 758 (2005).
[CrossRef]

Endo, T.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
[CrossRef]

Fendler, J. H.

E. Hutter and J. H. Fendler, Adv. Mater. 16, 1685 (2004).
[CrossRef]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Greve, J.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, Anal. Chem. 70, 703 (1998).
[CrossRef]

Hiepa, H. M.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, Biosens. Bioelectron. 23, 151 (2007).
[CrossRef]

Homola, J.

J. Dostálek, H. Vaisocherová, and J. Homola, Sens. Actuators B 108, 758 (2005).
[CrossRef]

Huang, J.

Y. Yuan, L. Wang, and J. Huang, Sens. Actuators B 161, 269 (2012).
[CrossRef]

Hutter, E.

E. Hutter and J. H. Fendler, Adv. Mater. 16, 1685 (2004).
[CrossRef]

Kerman, K.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
[CrossRef]

Kim, D.-K.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
[CrossRef]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, Biosens. Bioelectron. 23, 151 (2007).
[CrossRef]

Kooyman, R. P. H.

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, Anal. Chem. 70, 703 (1998).
[CrossRef]

Mahmoud, S. A.

H. P. E. Stern and S. A. Mahmoud, Communication Systems: Analysis and Design (Prentice Hall, 2003).

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Mirkin, C. A.

N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005).
[CrossRef]

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
[CrossRef]

Mulvaney, P.

S. Underwood and P. Mulvaney, Langmuir 10, 3427 (1994).
[CrossRef]

Nagatani, N.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
[CrossRef]

Nakano, K.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
[CrossRef]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Rosi, N. L.

N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005).
[CrossRef]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
[CrossRef]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
[CrossRef]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
[CrossRef]

Stern, H. P. E.

H. P. E. Stern and S. A. Mahmoud, Communication Systems: Analysis and Design (Prentice Hall, 2003).

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, Biosens. Bioelectron. 23, 151 (2007).
[CrossRef]

Tamiya, E.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

Underwood, S.

S. Underwood and P. Mulvaney, Langmuir 10, 3427 (1994).
[CrossRef]

Vaisocherová, H.

J. Dostálek, H. Vaisocherová, and J. Homola, Sens. Actuators B 108, 758 (2005).
[CrossRef]

Wang, C. R. C.

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

Wang, L.

Y. Yuan, L. Wang, and J. Huang, Sens. Actuators B 161, 269 (2012).
[CrossRef]

Yonezawa, Y.

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
[CrossRef]

Yuan, Y.

Y. Yuan, L. Wang, and J. Huang, Sens. Actuators B 161, 269 (2012).
[CrossRef]

Adv. Mater. (1)

E. Hutter and J. H. Fendler, Adv. Mater. 16, 1685 (2004).
[CrossRef]

Anal. Chem. (3)

C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, and J. Greve, Anal. Chem. 70, 703 (1998).
[CrossRef]

T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, Anal. Chem. 78, 6465 (2006).
[CrossRef]

S.-F. Cheng and L.-K. Chau, Anal. Chem. 75, 16 (2003).
[CrossRef]

Biosens. Bioelectron. (2)

C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, Biosens. Bioelectron. 22, 926 (2007).
[CrossRef]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, Biosens. Bioelectron. 23, 151 (2007).
[CrossRef]

Chem. Rev. (2)

N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005).
[CrossRef]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).
[CrossRef]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002).
[CrossRef]

Langmuir (1)

S. Underwood and P. Mulvaney, Langmuir 10, 3427 (1994).
[CrossRef]

Sens. Actuators B (2)

Y. Yuan, L. Wang, and J. Huang, Sens. Actuators B 161, 269 (2012).
[CrossRef]

J. Dostálek, H. Vaisocherová, and J. Homola, Sens. Actuators B 108, 758 (2005).
[CrossRef]

Other (1)

H. P. E. Stern and S. A. Mahmoud, Communication Systems: Analysis and Design (Prentice Hall, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of an MW-FOPPR sensor. Insets show the SEM images of immobilized AgNPs and AuNRs on the core surface. The absorption spectrum of NPs on the fiber core is exhibited in (b). (c) The prototype of an MW-FOPPR sensor chip.

Fig. 2.
Fig. 2.

(a) White-light source illumination scheme with a spectrometer. (b) LED illumination scheme with a photodiode receiver. (c) Absorption spectra obtained from an MW-FOPPR sensor in the presence of surrounding media of various refractive indices (RIs). (d) Multiple wavelength TDM technique.

Fig. 3.
Fig. 3.

(a) Transmission intensity interrogation of window 1 (AgNPs) and window 2 (AuNRs) in response to different RI solutions. (b) Corresponding calibration curves.

Fig. 4.
Fig. 4.

(a) Sensor responses to solutions containing anti-DNP antibody and streptavidin, respectively. Insets depict the sensing configurations. (b) Calibration curves of both windows.

Metrics