Abstract

We report an actively mode-locked continuous-wave (cw) optical parametric oscillator in singly resonant oscillator (SRO) configuration, generating stable 230 ps pulses at 80 MHz repetition rate. The idler-resonant cw SRO, configured in standing-wave cavity, is based on MgO:sPPLT as the nonlinear gain material and pumped at 532 nm. Mode-locking is achieved by direct deployment of an intracavity phase modulator close to one of the SRO cavity end mirrors. The effects of modulation depth and modulation frequency on mode-locked pulse duration and repetition rate are investigated for both idler and signal pulses. Mode-locking is further confirmed by enhancement of single-pass second-harmonic generation of SRO output in the crystal of β-BaB2O4.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ebrahim-Zadeh, in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds., Vol. 89 of Topics in Applied Physics (Springer-Verlag, 2003), pp. 179–218.
  2. S. C. Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh, Opt. Lett. 36, 1068 (2011).
    [CrossRef]
  3. N. Forget, S. Bahbah, F. Bretenaker, M. Lefebvre, and E. Rosencher, Opt. Lett. 31, 972 (2006).
    [CrossRef]
  4. J.-M. Melkonian, N. Forget, F. Bretenaker, C. Drag, M. Lefebvre, and E. Rosencher, Opt. Lett. 32, 1701 (2007).
    [CrossRef]
  5. A. Esteban-Martin, G. K. Samanta, K. Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, Opt. Lett. 37, 115 (2012).
    [CrossRef]
  6. G. K. Samanta and M. Ebrahim-Zadeh, Opt. Express 16, 6883 (2008).
    [CrossRef]
  7. G. K. Samanta, S. Chaitanya Kumar, R. Das, and M. Ebrahim-Zadeh, Opt. Lett. 34, 2255 (2009).
    [CrossRef]
  8. G. W. Hong and J. R. Whinnery, IEEE J. Quantum Electron. 5, 367 (1969).
    [CrossRef]
  9. D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
    [CrossRef]
  10. K. Devi, S. Chaitanya Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh, Opt. Express 20, 19313 (2012).
    [CrossRef]

2012 (2)

2011 (1)

2009 (1)

2008 (1)

2007 (1)

2006 (1)

1970 (1)

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

1969 (1)

G. W. Hong and J. R. Whinnery, IEEE J. Quantum Electron. 5, 367 (1969).
[CrossRef]

Bahbah, S.

Bretenaker, F.

Chaitanya Kumar, S.

Das, R.

Devi, K.

Drag, C.

Ebrahim-Zadeh, M.

Esteban-Martin, A.

Forget, N.

Hong, G. W.

G. W. Hong and J. R. Whinnery, IEEE J. Quantum Electron. 5, 367 (1969).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Kumar, S. C.

Lefebvre, M.

Melkonian, J.-M.

Rosencher, E.

Samanta, G. K.

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Whinnery, J. R.

G. W. Hong and J. R. Whinnery, IEEE J. Quantum Electron. 5, 367 (1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of experimental setup. λ / 2 , half-wave plate; PBS, polarizing beam splitter; L, lens; M 1 5 , cavity mirrors; M, dichroic mirror; EOM, electro-optic phase modulator.

Fig. 2.
Fig. 2.

Idler output pulse train obtained at modulation frequency ( ν 1 < ν < ν 2 ) and modulation depth ( μ > μ 1 > μ 2 ) of (a)  ν 1 , μ ; (b)  ν , μ ; (c)  ν 2 , μ ; (d)  ν , μ 1 ; (e)  ν , μ 2 .

Fig. 3.
Fig. 3.

(a) Applied modulation, (b) 80 MHz, and (c) 160 MHz repetition rate idler pulses at μ = 0.18 rad .

Fig. 4.
Fig. 4.

Signal pulses at (a) 160 MHz and (b) 80 MHz. (c) Spectrum of the mode-locked signal at 160 MHz.

Fig. 5.
Fig. 5.

(a) Signal pulse train at 80 MHz over 500 μs. (b) Spatial profile of the mode-locked signal pulses at 80 MHz.

Metrics