Abstract

The microjet injector system accelerates drugs and delivers them without a needle, which is shown to overcome the weaknesses of existing jet injectors. A significant increase in the delivered dose of drugs is reported with multiple pulses of laser beam at lower laser energy than was previously used in a Nd:YAG system. The new injection scheme uses the beam wavelength best absorbable by water at a longer pulse mode for elongated microjet penetration into a skin target. A 2.9 μm Er:YAG laser at 250 μs pulse duration is used for fluorescent staining of guinea pig skin and for injection controllability study. Hydrodynamic theory confirms the nozzle exit jet velocity obtained by the present microjet system.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Arora, M. R. Prausnitz, and S. Mitragotri, Int. J. Pharm. 364, 227 (2008).
    [CrossRef]
  2. T. Han and J. J. Yoh, J. Appl. Phys. 107, 103 (2010).
    [CrossRef]
  3. A. Taberner, N. C. Hogan, and I. W. Hunter, “Needle-free jet injection using real-time controlled linear Lorenz-force actuators,” Med. Eng. Phys. (to be published).
    [CrossRef]
  4. S. Mitragotri, Nat. Rev. Drug Discov. 5, 543 (2006).
    [CrossRef]
  5. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, 1995).
  6. A. H. Lefebvre, Atomization and Sprays (Hemisphere, 1989).
  7. J. A. Segre, J. Clin. Invest. 116, 1150 (2006).
    [CrossRef]
  8. M. S. Plesset and A. Prosperetti, Annu. Rev. Fluid Mech. 9, 145 (1977).
    [CrossRef]

2010 (1)

T. Han and J. J. Yoh, J. Appl. Phys. 107, 103 (2010).
[CrossRef]

2008 (1)

A. Arora, M. R. Prausnitz, and S. Mitragotri, Int. J. Pharm. 364, 227 (2008).
[CrossRef]

2006 (2)

S. Mitragotri, Nat. Rev. Drug Discov. 5, 543 (2006).
[CrossRef]

J. A. Segre, J. Clin. Invest. 116, 1150 (2006).
[CrossRef]

1977 (1)

M. S. Plesset and A. Prosperetti, Annu. Rev. Fluid Mech. 9, 145 (1977).
[CrossRef]

Arora, A.

A. Arora, M. R. Prausnitz, and S. Mitragotri, Int. J. Pharm. 364, 227 (2008).
[CrossRef]

Brennen, C. E.

C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, 1995).

Han, T.

T. Han and J. J. Yoh, J. Appl. Phys. 107, 103 (2010).
[CrossRef]

Hogan, N. C.

A. Taberner, N. C. Hogan, and I. W. Hunter, “Needle-free jet injection using real-time controlled linear Lorenz-force actuators,” Med. Eng. Phys. (to be published).
[CrossRef]

Hunter, I. W.

A. Taberner, N. C. Hogan, and I. W. Hunter, “Needle-free jet injection using real-time controlled linear Lorenz-force actuators,” Med. Eng. Phys. (to be published).
[CrossRef]

Lefebvre, A. H.

A. H. Lefebvre, Atomization and Sprays (Hemisphere, 1989).

Mitragotri, S.

A. Arora, M. R. Prausnitz, and S. Mitragotri, Int. J. Pharm. 364, 227 (2008).
[CrossRef]

S. Mitragotri, Nat. Rev. Drug Discov. 5, 543 (2006).
[CrossRef]

Plesset, M. S.

M. S. Plesset and A. Prosperetti, Annu. Rev. Fluid Mech. 9, 145 (1977).
[CrossRef]

Prausnitz, M. R.

A. Arora, M. R. Prausnitz, and S. Mitragotri, Int. J. Pharm. 364, 227 (2008).
[CrossRef]

Prosperetti, A.

M. S. Plesset and A. Prosperetti, Annu. Rev. Fluid Mech. 9, 145 (1977).
[CrossRef]

Segre, J. A.

J. A. Segre, J. Clin. Invest. 116, 1150 (2006).
[CrossRef]

Taberner, A.

A. Taberner, N. C. Hogan, and I. W. Hunter, “Needle-free jet injection using real-time controlled linear Lorenz-force actuators,” Med. Eng. Phys. (to be published).
[CrossRef]

Yoh, J. J.

T. Han and J. J. Yoh, J. Appl. Phys. 107, 103 (2010).
[CrossRef]

Annu. Rev. Fluid Mech. (1)

M. S. Plesset and A. Prosperetti, Annu. Rev. Fluid Mech. 9, 145 (1977).
[CrossRef]

Int. J. Pharm. (1)

A. Arora, M. R. Prausnitz, and S. Mitragotri, Int. J. Pharm. 364, 227 (2008).
[CrossRef]

J. Appl. Phys. (1)

T. Han and J. J. Yoh, J. Appl. Phys. 107, 103 (2010).
[CrossRef]

J. Clin. Invest. (1)

J. A. Segre, J. Clin. Invest. 116, 1150 (2006).
[CrossRef]

Med. Eng. Phys. (1)

A. Taberner, N. C. Hogan, and I. W. Hunter, “Needle-free jet injection using real-time controlled linear Lorenz-force actuators,” Med. Eng. Phys. (to be published).
[CrossRef]

Nat. Rev. Drug Discov. (1)

S. Mitragotri, Nat. Rev. Drug Discov. 5, 543 (2006).
[CrossRef]

Other (2)

C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, 1995).

A. H. Lefebvre, Atomization and Sprays (Hemisphere, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Ejected microjet in air. (a) Images of Er:YAG microjet at 408 mJ, 250 μs pulse duration showing jet velocity of 30 m / s . (b) Jet velocity shown for varying laser energy E = 0.5 ρ ( π r 2 ) u jet t .

Fig. 2.
Fig. 2.

FITC staining of guinea pig abdominal skin treated with 1.19 J / pulse .

Fig. 3.
Fig. 3.

FITC staining of guinea pig dorsal skin treated with (a)  1.19 J / pulse and (b)  1.57 J / pulse .

Fig. 4.
Fig. 4.

(a) Microjet injection shown with no splashback, 150 μm diameter, and gel penetration of drug at 408 mJ. (b) Penetration depth and width for varied laser energy.

Fig. 5.
Fig. 5.

Laser-induced vapor bubble: (a) radius of expanding bubble wall (data: symbol; theory: curve) and (b) images of 408 mJ beam-initiated bubbles in water.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P = ρ 0 u jet a .
R = R * t 1 2 ,
R * = 2 ( 3 D π ) 1 2 k 1 L ρ v ( T b ) ( T W T b ) .
R * 10 6 ( P w P ) ,
P = ( B + P 0 ) ( 1 V V c ) 7 B ,
U J = 2 Δ P ρ 0 ,

Metrics