Abstract

In this work we explore a method for controlling Raman cascade within an intracavity Raman laser, with a view to maximizing output power at desired visible wavelengths. Sum-frequency generation is used to suppress unwanted Stokes orders, and prevent their build up. Using this method to control the Raman cascade, we demonstrate increases in output power of 40% at 532 nm, 42% at 559 nm, and 67% at 586 nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. T. Basiev and R. C. Powell, in Handbook of Laser Technology and Applications, C. E. Webb, ed. (The Institute of Physics, 2003), chap. B1.7.
  2. P. Cerny, H. Jelenkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron. 28, 113 (2004).
    [CrossRef]
  3. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, Prog. Quantum Electron. 32, 121 (2008).
    [CrossRef]
  4. L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, Opt. Lett. 34, 1687 (2009).
    [CrossRef]
  5. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, Opt. Express 18, 20013 (2010).
    [CrossRef]
  6. J. Lin and H. M. Pask, Opt. Express 20, 15180 (2012).
    [CrossRef]
  7. X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, Opt. Express 19, 25623 (2011).
    [CrossRef]
  8. D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, Opt. Commun. 285, 3849 (2012).
    [CrossRef]
  9. K. Koch, G. T. Moore, and M. E. Dearborn, IEEE J. Quantum Electron. 33, 1743 (1997).
    [CrossRef]
  10. W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Froel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, Opt. Express 19, 6938 (2011).
    [CrossRef]
  11. J. Jakutis-Neto, J. Lin, N. U. Wetter, and H. M. Pask, Opt. Express 20, 9841 (2012).
    [CrossRef]

2012 (3)

2011 (2)

2010 (1)

2009 (1)

2008 (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, Prog. Quantum Electron. 32, 121 (2008).
[CrossRef]

2004 (1)

P. Cerny, H. Jelenkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron. 28, 113 (2004).
[CrossRef]

1997 (1)

K. Koch, G. T. Moore, and M. E. Dearborn, IEEE J. Quantum Electron. 33, 1743 (1997).
[CrossRef]

Basiev, T. T.

P. Cerny, H. Jelenkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron. 28, 113 (2004).
[CrossRef]

T. T. Basiev and R. C. Powell, in Handbook of Laser Technology and Applications, C. E. Webb, ed. (The Institute of Physics, 2003), chap. B1.7.

Bonner, G. M.

Burns, D.

Cerny, P.

P. Cerny, H. Jelenkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron. 28, 113 (2004).
[CrossRef]

Dawson, M. D.

Dearborn, M. E.

K. Koch, G. T. Moore, and M. E. Dearborn, IEEE J. Quantum Electron. 33, 1743 (1997).
[CrossRef]

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, Prog. Quantum Electron. 32, 121 (2008).
[CrossRef]

Fan, L.

Fan, Y. X.

Froel, I.

Geoghegan, S. L.

Hastie, J. E.

Huo, Y.

Jakutis-Neto, J.

Jelenkova, H.

P. Cerny, H. Jelenkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron. 28, 113 (2004).
[CrossRef]

Kemp, A. J.

Koch, K.

K. Koch, G. T. Moore, and M. E. Dearborn, IEEE J. Quantum Electron. 33, 1743 (1997).
[CrossRef]

Lee, A. J.

Li, X.

D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, Opt. Commun. 285, 3849 (2012).
[CrossRef]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, Opt. Express 19, 25623 (2011).
[CrossRef]

Li, Y. Q.

Lin, J.

Lubeigt, W.

Mildren, R. P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, Prog. Quantum Electron. 32, 121 (2008).
[CrossRef]

Moore, G. T.

K. Koch, G. T. Moore, and M. E. Dearborn, IEEE J. Quantum Electron. 33, 1743 (1997).
[CrossRef]

Pask, H. M.

Piper, J. A.

Powell, R. C.

T. T. Basiev and R. C. Powell, in Handbook of Laser Technology and Applications, C. E. Webb, ed. (The Institute of Physics, 2003), chap. B1.7.

Savitski, V. G.

Spence, D. J.

D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, Opt. Commun. 285, 3849 (2012).
[CrossRef]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, Opt. Express 19, 25623 (2011).
[CrossRef]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, Opt. Express 18, 20013 (2010).
[CrossRef]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, Prog. Quantum Electron. 32, 121 (2008).
[CrossRef]

Wang, H. T.

Wang, J.

Wang, Q.

Wetter, N. U.

Zhang, H. J.

Zverev, P. G.

P. Cerny, H. Jelenkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron. 28, 113 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Koch, G. T. Moore, and M. E. Dearborn, IEEE J. Quantum Electron. 33, 1743 (1997).
[CrossRef]

Opt. Commun. (1)

D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, Opt. Commun. 285, 3849 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Prog. Quantum Electron. (2)

P. Cerny, H. Jelenkova, P. G. Zverev, and T. T. Basiev, Prog. Quantum Electron. 28, 113 (2004).
[CrossRef]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, Prog. Quantum Electron. 32, 121 (2008).
[CrossRef]

Other (1)

T. T. Basiev and R. C. Powell, in Handbook of Laser Technology and Applications, C. E. Webb, ed. (The Institute of Physics, 2003), chap. B1.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Schematic diagram of the laser setup.

Fig. 2.
Fig. 2.

Plots showing power scaling at each visible wavelength as a function of absorbed pump power with and without Stokes cascade control, open and closed squares, respectively. Inset are plots of residual IR fields observed through M2 for 8 W absorbed pump with and without Stokes cascade control, black (lower) and grey (upper) lines, respectively.

Tables (1)

Tables Icon

Table 1. Summary of the Configurations Used to Generate Each Visible Wavelength Using a χ(2) Output Process to Couple the Intracavity Fundamental (F), 1st-Stokes (S1), and 2nd-Stokes (S2) Fieldsa

Metrics