Abstract

We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Crespo, J. T. Mendonca, and A. Dos Santos, Opt. Lett. 25, 829 (2000).
    [CrossRef]
  2. J. Darginavicius, G. Tamošauskas, A. Piskarskas, and A. Dubietis, Opt. Express 18, 16096 (2010).
    [CrossRef]
  3. J. Liu and T. Kobayashi, Sensors 10, 4296 (2010).
    [CrossRef]
  4. J. Liu, J. Zhang, and T. Kobayashi, Opt. Lett. 33, 1494 (2008).
    [CrossRef]
  5. E. Matsubara, T. Sekikawa, and M. Yamashita, Appl. Phys. Lett. 92, 071104 (2008).
    [CrossRef]
  6. H. Matsuki, K. Inoue, and E. Hanamura, Phys. Rev. B 75, 024102 (2007).
    [CrossRef]
  7. M. Zhi and A. V. Sokolov, Opt. Lett. 32, 2251 (2007).
    [CrossRef]
  8. V. Couderc, A. Tonello, C. Buy-Lesvigne, P. Leproux, and L. Grossard, Opt. Lett. 35, 145 (2010).
    [CrossRef]
  9. J. Fan, A. Migdall, and L. J. Wang, Opt. Express 15, 7146 (2007).
    [CrossRef]
  10. S. Gao and X. Xiao, Opt. Commun. 285, 784 (2012).
    [CrossRef]
  11. R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 104, 14190 (2007).
    [CrossRef]
  12. R. R. Frontiera, C. Fang, J. Dasgupta, and R. A. Mathies, Phys. Chem. Chem. Phys. 14, 405 (2012).
    [CrossRef]
  13. J. A. I. Oksanen, V. M. Helenius, and J. E. I. Korppi‐Tommola, Rev. Sci. Instrum. 64, 2706 (1993).
    [CrossRef]
  14. J. T. Mendonca, H. Crespo, and A. Guerreiro, Opt. Commun. 188, 383 (2001).
    [CrossRef]
  15. R. Weigand, J. T. Mendonca, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
    [CrossRef]
  16. H. Zeng, J. Wu, H. Xu, and K. Wu, Phys. Rev. Lett. 96, 083902 (2006).
    [CrossRef]

2012

S. Gao and X. Xiao, Opt. Commun. 285, 784 (2012).
[CrossRef]

R. R. Frontiera, C. Fang, J. Dasgupta, and R. A. Mathies, Phys. Chem. Chem. Phys. 14, 405 (2012).
[CrossRef]

2010

2009

R. Weigand, J. T. Mendonca, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
[CrossRef]

2008

E. Matsubara, T. Sekikawa, and M. Yamashita, Appl. Phys. Lett. 92, 071104 (2008).
[CrossRef]

J. Liu, J. Zhang, and T. Kobayashi, Opt. Lett. 33, 1494 (2008).
[CrossRef]

2007

J. Fan, A. Migdall, and L. J. Wang, Opt. Express 15, 7146 (2007).
[CrossRef]

M. Zhi and A. V. Sokolov, Opt. Lett. 32, 2251 (2007).
[CrossRef]

H. Matsuki, K. Inoue, and E. Hanamura, Phys. Rev. B 75, 024102 (2007).
[CrossRef]

R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 104, 14190 (2007).
[CrossRef]

2006

H. Zeng, J. Wu, H. Xu, and K. Wu, Phys. Rev. Lett. 96, 083902 (2006).
[CrossRef]

2001

J. T. Mendonca, H. Crespo, and A. Guerreiro, Opt. Commun. 188, 383 (2001).
[CrossRef]

2000

1993

J. A. I. Oksanen, V. M. Helenius, and J. E. I. Korppi‐Tommola, Rev. Sci. Instrum. 64, 2706 (1993).
[CrossRef]

Buy-Lesvigne, C.

Couderc, V.

Crespo, H.

J. T. Mendonca, H. Crespo, and A. Guerreiro, Opt. Commun. 188, 383 (2001).
[CrossRef]

H. Crespo, J. T. Mendonca, and A. Dos Santos, Opt. Lett. 25, 829 (2000).
[CrossRef]

Crespo, H. M.

R. Weigand, J. T. Mendonca, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
[CrossRef]

Darginavicius, J.

Dasgupta, J.

R. R. Frontiera, C. Fang, J. Dasgupta, and R. A. Mathies, Phys. Chem. Chem. Phys. 14, 405 (2012).
[CrossRef]

Dos Santos, A.

Dubietis, A.

Fan, J.

Fang, C.

R. R. Frontiera, C. Fang, J. Dasgupta, and R. A. Mathies, Phys. Chem. Chem. Phys. 14, 405 (2012).
[CrossRef]

Frontiera, R. R.

R. R. Frontiera, C. Fang, J. Dasgupta, and R. A. Mathies, Phys. Chem. Chem. Phys. 14, 405 (2012).
[CrossRef]

Gao, S.

S. Gao and X. Xiao, Opt. Commun. 285, 784 (2012).
[CrossRef]

Grossard, L.

Guerreiro, A.

J. T. Mendonca, H. Crespo, and A. Guerreiro, Opt. Commun. 188, 383 (2001).
[CrossRef]

Hanamura, E.

H. Matsuki, K. Inoue, and E. Hanamura, Phys. Rev. B 75, 024102 (2007).
[CrossRef]

Helenius, V. M.

J. A. I. Oksanen, V. M. Helenius, and J. E. I. Korppi‐Tommola, Rev. Sci. Instrum. 64, 2706 (1993).
[CrossRef]

Hochstrasser, R. M.

R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 104, 14190 (2007).
[CrossRef]

Inoue, K.

H. Matsuki, K. Inoue, and E. Hanamura, Phys. Rev. B 75, 024102 (2007).
[CrossRef]

Kobayashi, T.

Korppi-Tommola, J. E. I.

J. A. I. Oksanen, V. M. Helenius, and J. E. I. Korppi‐Tommola, Rev. Sci. Instrum. 64, 2706 (1993).
[CrossRef]

Leproux, P.

Liu, J.

Mathies, R. A.

R. R. Frontiera, C. Fang, J. Dasgupta, and R. A. Mathies, Phys. Chem. Chem. Phys. 14, 405 (2012).
[CrossRef]

Matsubara, E.

E. Matsubara, T. Sekikawa, and M. Yamashita, Appl. Phys. Lett. 92, 071104 (2008).
[CrossRef]

Matsuki, H.

H. Matsuki, K. Inoue, and E. Hanamura, Phys. Rev. B 75, 024102 (2007).
[CrossRef]

Mendonca, J. T.

R. Weigand, J. T. Mendonca, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
[CrossRef]

J. T. Mendonca, H. Crespo, and A. Guerreiro, Opt. Commun. 188, 383 (2001).
[CrossRef]

H. Crespo, J. T. Mendonca, and A. Dos Santos, Opt. Lett. 25, 829 (2000).
[CrossRef]

Migdall, A.

Oksanen, J. A. I.

J. A. I. Oksanen, V. M. Helenius, and J. E. I. Korppi‐Tommola, Rev. Sci. Instrum. 64, 2706 (1993).
[CrossRef]

Piskarskas, A.

Sekikawa, T.

E. Matsubara, T. Sekikawa, and M. Yamashita, Appl. Phys. Lett. 92, 071104 (2008).
[CrossRef]

Sokolov, A. V.

Tamošauskas, G.

Tonello, A.

Wang, L. J.

Weigand, R.

R. Weigand, J. T. Mendonca, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
[CrossRef]

Wu, J.

H. Zeng, J. Wu, H. Xu, and K. Wu, Phys. Rev. Lett. 96, 083902 (2006).
[CrossRef]

Wu, K.

H. Zeng, J. Wu, H. Xu, and K. Wu, Phys. Rev. Lett. 96, 083902 (2006).
[CrossRef]

Xiao, X.

S. Gao and X. Xiao, Opt. Commun. 285, 784 (2012).
[CrossRef]

Xu, H.

H. Zeng, J. Wu, H. Xu, and K. Wu, Phys. Rev. Lett. 96, 083902 (2006).
[CrossRef]

Yamashita, M.

E. Matsubara, T. Sekikawa, and M. Yamashita, Appl. Phys. Lett. 92, 071104 (2008).
[CrossRef]

Zeng, H.

H. Zeng, J. Wu, H. Xu, and K. Wu, Phys. Rev. Lett. 96, 083902 (2006).
[CrossRef]

Zhang, J.

Zhi, M.

Appl. Phys. Lett.

E. Matsubara, T. Sekikawa, and M. Yamashita, Appl. Phys. Lett. 92, 071104 (2008).
[CrossRef]

Opt. Commun.

S. Gao and X. Xiao, Opt. Commun. 285, 784 (2012).
[CrossRef]

J. T. Mendonca, H. Crespo, and A. Guerreiro, Opt. Commun. 188, 383 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

R. R. Frontiera, C. Fang, J. Dasgupta, and R. A. Mathies, Phys. Chem. Chem. Phys. 14, 405 (2012).
[CrossRef]

Phys. Rev. A

R. Weigand, J. T. Mendonca, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
[CrossRef]

Phys. Rev. B

H. Matsuki, K. Inoue, and E. Hanamura, Phys. Rev. B 75, 024102 (2007).
[CrossRef]

Phys. Rev. Lett.

H. Zeng, J. Wu, H. Xu, and K. Wu, Phys. Rev. Lett. 96, 083902 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. USA

R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 104, 14190 (2007).
[CrossRef]

Rev. Sci. Instrum.

J. A. I. Oksanen, V. M. Helenius, and J. E. I. Korppi‐Tommola, Rev. Sci. Instrum. 64, 2706 (1993).
[CrossRef]

Sensors

J. Liu and T. Kobayashi, Sensors 10, 4296 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Top, photograph of the CFWM sideband signals through an RG610 long-pass filter and viewed on an IR card. Bottom, photograph of the SFGFWM sideband signals on a sheet of white paper. (b) Normalized spectra of the SFGFWM sideband signals (solid curves), with the brightest FDF (dotted) and SFG (dashed) signals in the center. (c) Normalized spectra of the CFWM sideband signals. The solid triangles, circles and stars represent the CFWM signals generated in a 0.1-mm-thick BBO crystal. The solid and dashed lines display the corresponding signals generated in a 0.1-mm-thick BK7 glass plate (normalized to 0.5 intensity of the stronger BBO signals). The open triangles and squares show the 800 nm fundamental and IR-SCWL laser pulses, respectively.

Fig. 2.
Fig. 2.

Angular dependence of the sideband signal intensity of I1 at 750 nm (solid square) versus V2 at 375 nm (solid circle). The rotation angle of 0° indicates the phase-matching condition for maximal SFG generation from the two incident laser pulses. The side view of the experimental setup using the 0.1 mm thin BBO crystal is shown as an inset.

Fig. 3.
Fig. 3.

Calculated wavevectors of all the output beams in the observed pattern: solid stars, experimental results of CFWM and SFGFWM sidebands; solid triangles, calculated phase-matched sideband signals of CFWM with the interaction angle of 6°; solid squares, calculated phase-matched sideband signals of SFGFWM with the interaction angle of 3°. The solid curves are shown as a visual guide. The two solid arrow lines mark the fundamental and IR-SCWL pulses, and the dotted arrow lines connect the different-origin cascaded signals in the periodically collinear fashion. SFGFWM signals (V±i) possess higher energy than CFWM signals (I±i), hence are located at the right side of the figure corresponding to higher wavenumbers.

Fig. 4.
Fig. 4.

Temporal profiles of the concomitantly generated sideband signals. Self-compression is evident when comparing V1 (dashed curve) with V3 (solid) in SFGFWM, and with I1 (dotted) in NIR CFWM. The increasingly higher-order product of the intervening fields dictates the compression effect, which correlates with naturally larger angular separation of the sideband signal with respect to the laser pump beams.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

kUm={[(m+1)k1+mk2]24m(m+1)k1k2cos2(θ2)}12.

Metrics