Abstract

We demonstrate optical polarization vortex generation in a photonic-crystal fiber (PCF) by means of a CO2 laser-induced long period grating. Vortices are a special subclass of fiber modes that result in polarization-insensitive resonances even when grating perturbations are asymmetric, as is the case with structural perturbations in single-material PCFs. The physics of vortex generation, combined with the use of structural perturbations alone, in single-material fibers, opens up a new schematic for realizing harsh-environment sensors. We show that the temperature and polarization stability of our vortex devices is maintained for prolonged periods of time (tested up to 34 h) at temperatures exceeding 1000 °C. We envisage that this demonstration opens up a new way of realizing high-temperature sensors in a cost-effective manner.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
    [CrossRef]
  2. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, Opt. Mater. Express 1, 754 (2011).
    [CrossRef]
  3. G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, Opt. Lett. 29, 38 (2004).
    [CrossRef]
  4. Q. Zhan, Opt. Express 12, 3377 (2004).
    [CrossRef]
  5. A. M. Yao and M. J. Padgett, Adv. Opt. Photon. 3, 161 (2011).
    [CrossRef]
  6. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, J. Lightwave Technol. 19, 1574 (2001).
    [CrossRef]
  7. Y. Li, M. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. Grattan, Opt. Express 17, 19785 (2009).
    [CrossRef]
  8. K. Shiraishi, Y. Aizawa, and S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
    [CrossRef]
  9. S. Ramachandran, S. Golowich, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk, Opt. Lett. 30, 2864 (2005).
    [CrossRef]
  10. S. Ramachandran, P. Kristensen, and M. F. Yan, Opt. Lett. 34, 2525 (2009).
    [CrossRef]
  11. T. G. Euser, M. A. Schmidt, N. Y. Joly, C. Gabriel, C. Marquardt, L. Y. Zang, M. Fortsch, P. Banzer, A. Brenn, D. Elser, M. Scharrer, G. Leuchs, and P. St. J. Russell, J. Opt. Soc. Am. B 28, 193 (2011).
    [CrossRef]
  12. G. J. Pearce, T. D. Hedley, and D. M. Bird, Phys. Rev. B 71, 195108 (2005).
    [CrossRef]
  13. S. Ramachandran, J. Lightwave Technol. 23, 3426 (2005).
    [CrossRef]
  14. J. H. Wray and J. T. Neu, J. Opt. Soc. Am. A 59, 774 (1969).
    [CrossRef]
  15. Y. J. Rao, D. Duan, Y. Fan, T. Ke, and M. Xu, J. Lightwave Technol. 28, 1530 (2010).
    [CrossRef]

2011

2010

2009

2005

2004

2001

1996

1990

K. Shiraishi, Y. Aizawa, and S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
[CrossRef]

1969

J. H. Wray and J. T. Neu, J. Opt. Soc. Am. A 59, 774 (1969).
[CrossRef]

Aizawa, Y.

K. Shiraishi, Y. Aizawa, and S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
[CrossRef]

Banzer, P.

Bhatia, V.

Bird, D. M.

G. J. Pearce, T. D. Hedley, and D. M. Bird, Phys. Rev. B 71, 195108 (2005).
[CrossRef]

Brenn, A.

Dianov, E.

Dimarcello, F. V.

Ding, H.

Duan, D.

Elser, D.

Euser, T. G.

Fan, Y.

Février, S.

Fleming, J.

Fortsch, M.

Gabriel, C.

Ghalmi, S.

Golowich, S.

Grattan, K. T.

Grobnic, D.

Hedley, T. D.

G. J. Pearce, T. D. Hedley, and D. M. Bird, Phys. Rev. B 71, 195108 (2005).
[CrossRef]

Humbert, G.

Joly, N. Y.

Kawakami, S.

K. Shiraishi, Y. Aizawa, and S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
[CrossRef]

Ke, T.

Kristensen, P.

Leuchs, G.

Li, Y.

Lu, J.

Lu, P.

Malki, A.

Marquardt, C.

Mihailov, S. J.

Monberg, E.

Neu, J. T.

J. H. Wray and J. T. Neu, J. Opt. Soc. Am. A 59, 774 (1969).
[CrossRef]

Okhotnikov, O.

Padgett, M. J.

Pagnoux, D.

Pearce, G. J.

G. J. Pearce, T. D. Hedley, and D. M. Bird, Phys. Rev. B 71, 195108 (2005).
[CrossRef]

Ramachandran, S.

Rao, Y. J.

Rego, G.

Roy, P.

Russell, P. St. J.

Scharrer, M.

Schmidt, M. A.

Shiraishi, K.

K. Shiraishi, Y. Aizawa, and S. Kawakami, J. Lightwave Technol. 8, 1151 (1990).
[CrossRef]

Smelser, C. W.

Sulimov, V.

Sun, T.

Vengsarkar, A. M.

Walker, R. B.

Wang, D. N.

Wisk, P.

Wray, J. H.

J. H. Wray and J. T. Neu, J. Opt. Soc. Am. A 59, 774 (1969).
[CrossRef]

Xu, M.

Yan, M. F.

Yang, M.

Yao, A. M.

Zang, L. Y.

Zhan, Q.

Adv. Opt. Photon.

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. H. Wray and J. T. Neu, J. Opt. Soc. Am. A 59, 774 (1969).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phys. Rev. B

G. J. Pearce, T. D. Hedley, and D. M. Bird, Phys. Rev. B 71, 195108 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Image of the PCF hole structured for the fiber used in the devices. (b) Simulated phase matching curves for the vortex modes with actual grating period shown as dotted line, and correction shown as a solid line. (c)  20 × microscope image of device with induced perturbations. (d) Device spectra: TE 01 mode is favored due to polarization in the excitation source.

Fig. 2.
Fig. 2.

(a) Mode imaging setup. (b) Simulated TE 01 mode image. (c) Experimental mode image, input wavelength is 846 nm. (d)–(f) Images for given polarizer angles (transmission axis shown in white).

Fig. 3.
Fig. 3.

(a) High-temperature setup. (b) Change in resonant wavelength with temperature. (c) Resonance spectra for a slight change in polarization during heating. (d) Change in resonance depth and position versus time, during 34 h at 1079 °C.

Metrics