Abstract

We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys statistics postulated by Kolmogorov turbulence theory. We introduce this simulated turbulence through the use of a phase-only spatial light modulator. Once the turbulence is introduced, the degradation in mode quality results in crosstalk between OAM modes. We study this crosstalk in OAM for 11 modes, showing that turbulence uniformly degrades the purity of all the modes within this range, irrespective of mode number.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Beckers, Annu. Rev. Astron. Astrophys. 31, 13 (1993).
    [CrossRef]
  2. V. I. Tatarski, Wave Propogation in a Turbulent Medium (McGraw-Hill, 1961).
  3. D. L. Fried, J. Opt. Soc. Am. 55, 1427 (1965).
    [CrossRef]
  4. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A 45, 8185 (1992).
    [CrossRef]
  5. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
    [CrossRef]
  6. M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, Opt. Express 20, 13195 (2012).
    [CrossRef]
  7. M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A 64, 012306 (2001).
    [CrossRef]
  8. C. Paterson, Phys. Rev. Lett. 94 (2005).
    [CrossRef]
  9. G. A. Tyler and R. W. Boyd, Opt. Lett. 34, 142 (2009).
    [CrossRef]
  10. B. Smith and M. Raymer, Phys. Rev. A 74, 5 (2006).
    [CrossRef]
  11. G. Gbur and R. K. Tyson, J. Opt. Soc. Am. A 25, 225 (2008).
    [CrossRef]
  12. F. Roux, Phys. Rev. A 83 (2011).
    [CrossRef]
  13. G. Berkhout, M. Lavery, J. Courtial, M. Beijersbergen, and M. Padgett, Phys. Rev. Lett. 105 (2010).
    [CrossRef]
  14. M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, Opt. Express 20, 2110 (2012).
    [CrossRef]
  15. R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, Proc. SPIE 794879480L (2011).
    [CrossRef]

2012 (2)

2011 (2)

F. Roux, Phys. Rev. A 83 (2011).
[CrossRef]

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, Proc. SPIE 794879480L (2011).
[CrossRef]

2010 (1)

G. Berkhout, M. Lavery, J. Courtial, M. Beijersbergen, and M. Padgett, Phys. Rev. Lett. 105 (2010).
[CrossRef]

2009 (1)

2008 (1)

2006 (1)

B. Smith and M. Raymer, Phys. Rev. A 74, 5 (2006).
[CrossRef]

2005 (1)

C. Paterson, Phys. Rev. Lett. 94 (2005).
[CrossRef]

2004 (1)

2001 (1)

M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A 64, 012306 (2001).
[CrossRef]

1993 (1)

J. M. Beckers, Annu. Rev. Astron. Astrophys. 31, 13 (1993).
[CrossRef]

1992 (1)

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

1965 (1)

Allen, L.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Barnett, S. M.

Beckers, J. M.

J. M. Beckers, Annu. Rev. Astron. Astrophys. 31, 13 (1993).
[CrossRef]

Beijersbergen, M.

G. Berkhout, M. Lavery, J. Courtial, M. Beijersbergen, and M. Padgett, Phys. Rev. Lett. 105 (2010).
[CrossRef]

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Berkhout, G.

G. Berkhout, M. Lavery, J. Courtial, M. Beijersbergen, and M. Padgett, Phys. Rev. Lett. 105 (2010).
[CrossRef]

Berkhout, G. C. G.

Björk, G.

M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A 64, 012306 (2001).
[CrossRef]

Bourennane, M.

M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A 64, 012306 (2001).
[CrossRef]

Boyd, R. W.

Courtial, J.

Franke-Arnold, S.

Fried, D. L.

Gauthier, D. J.

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, Proc. SPIE 794879480L (2011).
[CrossRef]

Gbur, G.

Gibson, G.

Jha, A.

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, Proc. SPIE 794879480L (2011).
[CrossRef]

Karlsson, A.

M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A 64, 012306 (2001).
[CrossRef]

Lavery, M.

G. Berkhout, M. Lavery, J. Courtial, M. Beijersbergen, and M. Padgett, Phys. Rev. Lett. 105 (2010).
[CrossRef]

Lavery, M. P. J.

Leach, J.

Love, G. D.

Malik, M.

M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, Opt. Express 20, 13195 (2012).
[CrossRef]

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, Proc. SPIE 794879480L (2011).
[CrossRef]

Mirhosseini, M.

O’Sullivan, C.

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, Proc. SPIE 794879480L (2011).
[CrossRef]

O’Sullivan, M.

Padgett, M.

G. Berkhout, M. Lavery, J. Courtial, M. Beijersbergen, and M. Padgett, Phys. Rev. Lett. 105 (2010).
[CrossRef]

Padgett, M. J.

Pas’ko, V.

Paterson, C.

C. Paterson, Phys. Rev. Lett. 94 (2005).
[CrossRef]

Raymer, M.

B. Smith and M. Raymer, Phys. Rev. A 74, 5 (2006).
[CrossRef]

Robertson, D. J.

Rodenburg, B.

M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, Opt. Express 20, 13195 (2012).
[CrossRef]

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, Proc. SPIE 794879480L (2011).
[CrossRef]

Roux, F.

F. Roux, Phys. Rev. A 83 (2011).
[CrossRef]

Smith, B.

B. Smith and M. Raymer, Phys. Rev. A 74, 5 (2006).
[CrossRef]

Spreeuw, R.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Tatarski, V. I.

V. I. Tatarski, Wave Propogation in a Turbulent Medium (McGraw-Hill, 1961).

Tyler, G. A.

Tyson, R. K.

Vasnetsov, M.

Woerdman, J.

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Annu. Rev. Astron. Astrophys. (1)

J. M. Beckers, Annu. Rev. Astron. Astrophys. 31, 13 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (4)

L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A 64, 012306 (2001).
[CrossRef]

B. Smith and M. Raymer, Phys. Rev. A 74, 5 (2006).
[CrossRef]

F. Roux, Phys. Rev. A 83 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

G. Berkhout, M. Lavery, J. Courtial, M. Beijersbergen, and M. Padgett, Phys. Rev. Lett. 105 (2010).
[CrossRef]

C. Paterson, Phys. Rev. Lett. 94 (2005).
[CrossRef]

Proc. SPIE (1)

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, Proc. SPIE 794879480L (2011).
[CrossRef]

Other (1)

V. I. Tatarski, Wave Propogation in a Turbulent Medium (McGraw-Hill, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) A beam carrying OAM is prepared by the use of an -forked hologram, seen in (b). This is realized on an SLM illuminated by an expanded HeNe laser. The first order beam is imaged onto the front aperture of an OAM mode sorter (MS), which converts OAM states into transverse momentum states with the use of two refractive optical elements. These transverse momentum states are then focused to specific spatial locations on a CCD. The power measured in each of these locations gives a measure of the OAM superposition incident on the MS. (c) Thin-phase turbulence is added to the -forked hologram changing the OAM superposition measured by the system.

Fig. 2.
Fig. 2.

The average power (sΔ) in detected mode ψΔ is plotted as a function of turbulence strength (D/r0) for an input mode with =0 [see Eq. (2)]. Experimental data (crosses) is coplotted with the theoretical prediction given by Eq. (2) taking into account the inherent crosstalk of the mode sorter (solid lines). The original theory from [9] is also plotted for comparison (dotted lines).

Fig. 3.
Fig. 3.

The spread in power resulting from atmospheric turbulence was measured for a range of different propagating OAM modes ψ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ϕ(r1)ϕ(r2)]2=6.88|r1r2r0|5/3.
sΔ=1π01ρdρ02πdθe3.44[(Dr0)(ρsinθ2)]5/3cosΔθ,
[O0O1ON]=[1gabc1hdef1f][I0I1IN].

Metrics