Abstract

We derive a complex area correlation theorem describing global second-order statistical properties of pulses propagating in coherent linear absorbers. We also illustrate temporal evolution of a generic partially coherent pulse in a coherent linear absorber by discussing the behavior of its temporal intensity profile and degree of coherence.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
  2. Q. Lin, L. Wang, and S. Zhu, Opt. Commun. 219, 65 (2003).
    [CrossRef]
  3. M. Brunel and S. Coëtlemec, Opt. Commun. 230, 1 (2004).
    [CrossRef]
  4. W. Huang, S. A. Ponomarenko, M. Cada, and G. P. Agrawal, J. Opt. Soc. Am. A 24, 3063 (2007).
    [CrossRef]
  5. C. L. Ding, L. Z. Pan, and B. D. Lu, J. Opt. Soc. Am. B 26, 1728 (2009).
    [CrossRef]
  6. S. A. Ponomarenko, Opt. Express 20, 2548 (2012).
    [CrossRef]
  7. H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andrés, Opt. Express 18, 14979 (2010).
    [CrossRef]
  8. S. Haghgoo and S. A. Ponomarenko, Opt. Express 19, 9750 (2011).
    [CrossRef]
  9. S. Haghgoo and S. A. Ponomarenko, Opt. Lett. 37, 1328 (2012).
    [CrossRef]
  10. L. Mokhtarpour, G. H. Akter, and S. A. Ponomarenko, Opt. Express 20, 17816 (2012).
    [CrossRef]
  11. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1975).
  12. P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
    [CrossRef]

2012 (3)

2011 (1)

2010 (1)

2009 (1)

2007 (1)

2004 (1)

M. Brunel and S. Coëtlemec, Opt. Commun. 230, 1 (2004).
[CrossRef]

2003 (1)

Q. Lin, L. Wang, and S. Zhu, Opt. Commun. 219, 65 (2003).
[CrossRef]

2002 (1)

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Agrawal, G. P.

W. Huang, S. A. Ponomarenko, M. Cada, and G. P. Agrawal, J. Opt. Soc. Am. A 24, 3063 (2007).
[CrossRef]

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

Akter, G. H.

Allen, L.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1975).

Andrés, P.

Brunel, M.

M. Brunel and S. Coëtlemec, Opt. Commun. 230, 1 (2004).
[CrossRef]

Cada, M.

Coëtlemec, S.

M. Brunel and S. Coëtlemec, Opt. Commun. 230, 1 (2004).
[CrossRef]

Ding, C. L.

Eberly, J. H.

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1975).

Friberg, A. T.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Haghgoo, S.

Huang, W.

Lajunen, H.

Lancis, J.

Lin, Q.

Q. Lin, L. Wang, and S. Zhu, Opt. Commun. 219, 65 (2003).
[CrossRef]

Lu, B. D.

Mokhtarpour, L.

Paakkonen, P.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Pan, L. Z.

Ponomarenko, S. A.

Silvestre, E.

Torres-Company, V.

Turunen, J.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Vahimaa, P.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Wang, L.

Q. Lin, L. Wang, and S. Zhu, Opt. Commun. 219, 65 (2003).
[CrossRef]

Wyrowski, F.

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Zhu, S.

Q. Lin, L. Wang, and S. Zhu, Opt. Commun. 219, 65 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

Q. Lin, L. Wang, and S. Zhu, Opt. Commun. 219, 65 (2003).
[CrossRef]

M. Brunel and S. Coëtlemec, Opt. Commun. 230, 1 (2004).
[CrossRef]

P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, and F. Wyrowski, Opt. Commun. 204, 53 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (2)

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

GSM pulse intensity profile. The pulse parameters are (a) tc=Teff=5tp and (b) tc=Teff=tp/5.

Fig. 2.
Fig. 2.

Magnitude of the temporal degree of coherence of a relatively long GSM pulse at (a) Z=1 and (b) Z=50. The pulse parameters are tc=Teff=tp/5.

Fig. 3.
Fig. 3.

Magnitude of the temporal degree of coherence of a rather short GSM pulse at (a) Z=1 and (b) Z=50. The pulse parameters are tc=Teff=5tp.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ζΩ=iκσΔ,
τσ=(γ+iΔ)σ+iΩ,
σΔ=dΔσ(τ,ζ;Δ)g(Δ).
E(τ,ζ)=dωE˜0(ω)exp[iωτκR(ω)ζ].
R(ω)=1γ+i(Δω)Δ.
E˜0(ω)=dt2πE(t,0)eiωt,
Γ(τ1,ζ1;τ2,ζ2)=E*(τ1,ζ1)E(τ2,ζ2).
Γ(τ1,ζ1;τ2,ζ2)=dω1dω2W0(ω1,ω2)×ei(ω1τ1ω2τ2)exp{κ[R*(ω1)ζ1+R(ω2)ζ2]},
W0(ω1,ω2)=E˜0*(ω1)E˜0(ω2).
A(ζ)dτE(τ,ζ).
CA(ζ1,ζ2)A*(ζ1)A(ζ2)=dτ1dτ2Γ(τ1,ζ1;τ2,ζ2).
δ(ω)=dt2πeiωt,
CA(ζ1,ζ2)=CA0exp{κ[R*(0)ζ1+R(0)ζ2]},
CA(ζ1,ζ2)=CA0eα(ζ1+ζ2)eiβ(ζ2ζ1),
α=2κγγ2+Δ2Δ,
β=2κΔγ2+Δ2Δ.
A(ζ)=A0eαζeiβζ,
W0(ω1,ω2)exp[(ω1ω2)2tp22]exp[(ω1+ω2)2teff28],
1teff2=1tc2+14tp2,
g(Δ)=1π1/TΔΔ2+1/TΔ2,
RL(ω)=11/Teff+i(Δω).
γ(τ1,ζ;τ2,ζ)Γ(τ1,ζ;τ2,ζ)I(τ1,ζ)I(τ2,ζ),

Metrics