Abstract

An ultrasonic sensor based on two cascaded phase-shifted fiber Bragg gratings (PS-FBGs) is proposed and demonstrated. In place of an external cavity laser, a broadband amplified spontaneous emission light source is used to demonstrate multiplexing ability suitable for sensor networks. The system has a high sensitivity to ultrasonic waves generated by a PZT actuator placed 7.5 cm away from the PS-FBG, because of the steep slope in the center of the PS-FBG spectrum. A second advantage of the phase shift is to reduce the effective sensor length, leading to the achievement of broadband characteristics. A pencil lead break test was performed and all results are compared to a traditional PZT sensor.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wild and S. Hinckley, Sensors J. 8, 1184 (2008).
    [CrossRef]
  2. H. Tsuda, E. Sato, T. Nakajima, H. Nakamura, T. Arakawa, H. Shiono, M. Minato, H. Kurabayashi, and A. Sato, Opt. Lett. 34, 2942 (2009).
    [CrossRef]
  3. J. R. Lee and H. Tsuda, Scripta Mater. 53, 1181 (2005).
    [CrossRef]
  4. A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 304 (2005).
    [CrossRef]
  5. A. Rosenthal, D. Razansky, and V. Ntziachristos, Opt. Lett. 36, 1833 (2011).
    [CrossRef]
  6. Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007).
    [CrossRef]
  7. I. Perez, H. L. Cui, and E. Udd, Proc. SPIE 209, 4328 (2001).
    [CrossRef]
  8. A. I. Azmi, D. Sen, W. Sheng, J. Canning, and G. D. Peng, J. Lightwave Technol. 29, 3453 (2011).
    [CrossRef]
  9. P. Niewczas, A. J. Willshire, L. Dziuda, and J. R. McDonald, IEEE Trans. Instrum. Meas. 53, 1192 (2004).
    [CrossRef]
  10. A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, and D. A. Jackson, Appl. Opt. 36, 934 (1997).
    [CrossRef]

2011 (2)

2009 (1)

2008 (1)

G. Wild and S. Hinckley, Sensors J. 8, 1184 (2008).
[CrossRef]

2007 (1)

Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007).
[CrossRef]

2005 (2)

J. R. Lee and H. Tsuda, Scripta Mater. 53, 1181 (2005).
[CrossRef]

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 304 (2005).
[CrossRef]

2004 (1)

P. Niewczas, A. J. Willshire, L. Dziuda, and J. R. McDonald, IEEE Trans. Instrum. Meas. 53, 1192 (2004).
[CrossRef]

2001 (1)

I. Perez, H. L. Cui, and E. Udd, Proc. SPIE 209, 4328 (2001).
[CrossRef]

1997 (1)

Arakawa, T.

Azmi, A. I.

Bernini, R.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 304 (2005).
[CrossRef]

Canning, J.

Cui, H. L.

I. Perez, H. L. Cui, and E. Udd, Proc. SPIE 209, 4328 (2001).
[CrossRef]

Cusano, A.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 304 (2005).
[CrossRef]

Dziuda, L.

P. Niewczas, A. J. Willshire, L. Dziuda, and J. R. McDonald, IEEE Trans. Instrum. Meas. 53, 1192 (2004).
[CrossRef]

Ferreira, L. A.

Giordano, M.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 304 (2005).
[CrossRef]

Hinckley, S.

G. Wild and S. Hinckley, Sensors J. 8, 1184 (2008).
[CrossRef]

Jackson, D. A.

Kojima, S.

Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007).
[CrossRef]

Komatsuzaki, S.

Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007).
[CrossRef]

Kurabayashi, H.

Kuwahara, J.

Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007).
[CrossRef]

Lee, J. R.

J. R. Lee and H. Tsuda, Scripta Mater. 53, 1181 (2005).
[CrossRef]

Lobo Ribeiro, A. B.

McDonald, J. R.

P. Niewczas, A. J. Willshire, L. Dziuda, and J. R. McDonald, IEEE Trans. Instrum. Meas. 53, 1192 (2004).
[CrossRef]

Minardo, A.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 304 (2005).
[CrossRef]

Minato, M.

Nakajima, T.

Nakamura, H.

Natori, K.

Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007).
[CrossRef]

Niewczas, P.

P. Niewczas, A. J. Willshire, L. Dziuda, and J. R. McDonald, IEEE Trans. Instrum. Meas. 53, 1192 (2004).
[CrossRef]

Ntziachristos, V.

Ogisu, T.

Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007).
[CrossRef]

Okabe, Y.

Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007).
[CrossRef]

Peng, G. D.

Perez, I.

I. Perez, H. L. Cui, and E. Udd, Proc. SPIE 209, 4328 (2001).
[CrossRef]

Razansky, D.

Rosenthal, A.

Santos, J. L.

Sato, A.

Sato, E.

Sen, D.

Sheng, W.

Shiono, H.

Takeda, N.

Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007).
[CrossRef]

Tsuda, H.

Udd, E.

I. Perez, H. L. Cui, and E. Udd, Proc. SPIE 209, 4328 (2001).
[CrossRef]

Wild, G.

G. Wild and S. Hinckley, Sensors J. 8, 1184 (2008).
[CrossRef]

Willshire, A. J.

P. Niewczas, A. J. Willshire, L. Dziuda, and J. R. McDonald, IEEE Trans. Instrum. Meas. 53, 1192 (2004).
[CrossRef]

Zeni, L.

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 304 (2005).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Instrum. Meas. (1)

P. Niewczas, A. J. Willshire, L. Dziuda, and J. R. McDonald, IEEE Trans. Instrum. Meas. 53, 1192 (2004).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 304 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (2)

Proc. SPIE (1)

I. Perez, H. L. Cui, and E. Udd, Proc. SPIE 209, 4328 (2001).
[CrossRef]

Scripta Mater. (1)

J. R. Lee and H. Tsuda, Scripta Mater. 53, 1181 (2005).
[CrossRef]

Sensors J. (1)

G. Wild and S. Hinckley, Sensors J. 8, 1184 (2008).
[CrossRef]

Smart Mater. Struct. (1)

Y. Okabe, J. Kuwahara, K. Natori, N. Takeda, T. Ogisu, S. Kojima, and S. Komatsuzaki, Smart Mater. Struct. 16, 1370 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the sensing system. OA, optical attenuator; O-scope, oscilloscope; Amp, amplifier; FG, function generator; PZT1, actuator; PZT2, sensor.

Fig. 2.
Fig. 2.

Reflectivities of the AFBGs and the transmittances of the two pairs of the PS-FBG filter and sensor are obtained using a spectrometer, (a) the first pair, and (b) the second pair. The insets show the output spectrum of the sensing system with an ultra-narrow peak under different conditions.

Fig. 3.
Fig. 3.

Temporal and spectral responses obtained from the PZT and PS-FBG sensor, respectively, while injecting a 0.8 MHz continuous sinusoidal ultrasonic wave. Both signals showed sensitivity of the PS-FBG sensor to high frequencies.

Fig. 4.
Fig. 4.

Temporal and spectral responses obtained from PZT and PS-FBG sensor, respectively, while injecting 0.3 MHz burst broadband ultrasonic wave. Both PZT sensor and PS-FBG sensor detected the burst broadband ultrasonic wave simultaneously, while with similar spectral responses from 0.3 MHz to 0.4 MHz.

Fig. 5.
Fig. 5.

256 time-averaged temporal responses obtained from two pairs of PS-FBGs with different Bragg wavelengths. Using this design, the broadband ASE light source can support multiple channels to establish a practical AE sensor network. Comparing these two curves, the 0.018 nm PS-FBG has lower noise and higher sensitivity to ultrasonic waves.

Fig. 6.
Fig. 6.

PZT sensor and PS-FBG sensor responses to AE signals simulated by a pencil lead break test. Although the temporal and spectral responses have almost the same shape, the PS-FBG is more sensitive to low frequency vibration.

Metrics