Abstract

Optical fibers have long been used to impose spatial coherence to shape free-space optical beams. Recent work has shown that one can use higher order fiber modes to create more exotic beam profiles. We experimentally generate optical bottles from Talbot imaging in the coherent superposition of two fiber modes excited with long period gratings, and obtain a 28μm×6μm bottle with controlled contrast up to 10.13 dB. Our geometry allows for phase tuning of one mode with respect to the other, which enables us to dynamically move the bottle in free space.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
    [CrossRef]
  2. K. Oh, S. Choi, Y. Jung, and J. W. Lee, J. Lightwave Technol. 23, 524 (2005).
    [CrossRef]
  3. M.-L. Hu, C.-Y. Wang, Y.-J. Song, Y.-F. Li, L. Chai, E. E. Serebryannikov, and A. M. Zheltikov, Opt. Express 14, 4128 (2006).
    [CrossRef]
  4. V. Pureur, J. C. Knight, and B. T. Kuhlmey, Opt. Express 18, 8906 (2010).
    [CrossRef]
  5. T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
    [CrossRef]
  6. A. Witkowska, S. G. Leon-Saval, A. Pham, and T. A. Birks, Opt. Lett. 33, 306 (2008).
    [CrossRef]
  7. S. Ramachandran, P. Kristensen, and M. F. Yan, Opt. Lett. 34, 2525 (2009).
    [CrossRef]
  8. N. Božinović, S. Golowich, P. Kristensen, and S. Ramachandran, Opt. Lett. 37, 2451 (2012).
    [CrossRef]
  9. X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, Appl. Phys. Lett. 94, 201102 (2009).
    [CrossRef]
  10. P. Steinvurzel, K. Tantiwanichapan, M. Goto, and S. Ramachandran, Opt. Lett. 36, 4671 (2011).
    [CrossRef]
  11. S. Chávez-Cerda, E. Tepichin, M. A. Meneses-Nava, G. Ramirez, and J. M. Hickmann, Opt. Express 3, 524 (1998).
    [CrossRef]
  12. B. P. S. Ahluwalia, W. C. Cheong, X.-C. Yuan, L.-S. Zhang, S.-H. Tao, J. Bu, and H. Wang, Opt. Lett. 31, 987 (2006).
    [CrossRef]
  13. L. Isenhower, W. Williams, A. Dally, and M. Saffman, Opt. Lett. 34, 1159 (2009).
    [CrossRef]
  14. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Opt. Express 17, 5743 (2009).
    [CrossRef]
  15. T. Čižmár, M. Šiler, and P. Zemánek, Appl Phys. B 84, 197 (2006).
    [CrossRef]

2012

2011

2010

2009

2008

2006

2005

2002

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

1998

1992

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
[CrossRef]

Ahluwalia, B. P. S.

Birks, T. A.

Božinovic, N.

Bu, J.

Chai, L.

Chávez-Cerda, S.

Cheong, W. C.

Choi, S.

Cižmár, T.

T. Čižmár, M. Šiler, and P. Zemánek, Appl Phys. B 84, 197 (2006).
[CrossRef]

Courjon, D.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Dally, A.

Desyatnikov, A. S.

Ghiggino, K. P.

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
[CrossRef]

Golowich, S.

Goto, M.

Grosjean, T.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Harris, M. R.

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
[CrossRef]

Hickmann, J. M.

Hu, M.-L.

Isenhower, L.

Jung, Y.

Kivshar, Y. S.

Knight, J. C.

Kristensen, P.

Krolikowski, W.

Kuhlmey, B. T.

Lee, J. W.

Leon-Saval, S. G.

Li, L.

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, Appl. Phys. Lett. 94, 201102 (2009).
[CrossRef]

Li, Y.-F.

Meneses-Nava, M. A.

Oh, K.

Peyghambarian, N.

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, Appl. Phys. Lett. 94, 201102 (2009).
[CrossRef]

Pham, A.

Pureur, V.

Ramachandran, S.

Ramirez, G.

Rode, A. V.

Saffman, M.

Schülzgen, A.

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, Appl. Phys. Lett. 94, 201102 (2009).
[CrossRef]

Serebryannikov, E. E.

Shvedov, V. G.

Šiler, M.

T. Čižmár, M. Šiler, and P. Zemánek, Appl Phys. B 84, 197 (2006).
[CrossRef]

Song, Y.-J.

Spajer, M.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Spizzirri, P. G.

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
[CrossRef]

Steinvurzel, P.

Tantiwanichapan, K.

Tao, S.-H.

Tepichin, E.

Wang, C.-Y.

Wang, H.

Williams, W.

Witkowska, A.

Yan, M. F.

Yuan, X.-C.

Zemánek, P.

T. Čižmár, M. Šiler, and P. Zemánek, Appl Phys. B 84, 197 (2006).
[CrossRef]

Zhang, L.-S.

Zheltikov, A. M.

Zhu, X.

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, Appl. Phys. Lett. 94, 201102 (2009).
[CrossRef]

Appl Phys. B

T. Čižmár, M. Šiler, and P. Zemánek, Appl Phys. B 84, 197 (2006).
[CrossRef]

Appl. Phys. Lett.

X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, Appl. Phys. Lett. 94, 201102 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

T. Grosjean, D. Courjon, and M. Spajer, Opt. Commun. 203, 1 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
[CrossRef]

Supplementary Material (2)

» Media 1: AVI (3267 KB)     
» Media 2: AVI (286 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup; (b) LPG spectra of grating 1 (LP0,5), grating 2 (LP0,15), and both gratings; (c) a tomogram of the y-axis cut; (d) 2-D cross section of the bottle at z=216μm, indicated by the dashed line in (c). An animation of the full 3-D tomogram is shown in Media 1.

Fig. 2.
Fig. 2.

(a) Gouy phase difference between the free space propagation of the LP0,5 and LP0,15 modes as calculated from Eq. (3); (b) tomogram of the x-axis cut, where the bottles align with the beat period shown in (a); (c) z-cut of the on-axis beam intensity, indicated by white dashed line in (b); (d) x-cut at z=216μm.

Fig. 3.
Fig. 3.

Tuning the bottle contrast by wavelength tuning. (a)–(d) Tomograms at the indicated wavelengths and relative power in LP0,5/LP0,15; (e)–(g) their respective on-axis intensity lineplots; (i)–(l) their respective transverse intensity plots along the white dashed lines.

Fig. 4.
Fig. 4.

(a) Schematic diagram showing heat applied between the two gratings; (b) axial position of a dark focus as a function of temperature (blue dashed curve) and contrast of this focus as it moves (green solid curve); (c)–(f) tomograms at different measured temperatures, where the white arrows indicate the dark focus tracked in (b). An animation of the tomogram evolution as a function temperature is shown in Media 2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(r)=a0,mJ0(kt0,mr)ei(k0zϕ0,m(z)+ϑm),
I(r,z)=I0,m(r)+I0,n(r)+2I0,m(r)I0,n(r)cos(ϕ0,m(z)ϕ0,n(z)+ϑm,n),
ϕ0,m(z)=z(k0β)=k0z(1(1ncl2+neff0,m2)).
Δϕ(T)=(dneff0,1/dTdneff0,m/dT)k0LΔT,

Metrics