Abstract

We designed, fabricated, and characterized thermal performances of Fabry-Pérot quantum-dot lasers with both metal-coated and conventional dielectric waveguides. With proper design, metals, such as Ag, Au, Cu, and Al can function as a low loss waveguide wall as well as an efficient heat remover. Metal-cavity waveguide lasers showed excellent threshold and characteristic temperature working above 120 °C, while dielectric waveguide lasers ceased operation near 80 °C under the same conditions. The thermal analysis of these lasers showed that metal-cavity lasers have approximately 1.5 times higher thermal conductivity compared with those of the dielectric lasers. We believe that the metal-coating of waveguides and the proper selection of metal efficiently remove the heat from the active region and enable stable lasing operation at high temperature.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa and H. Sasaki, Appl. Phys. Lett. 40, 939 (1982).
    [CrossRef]
  2. A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
    [CrossRef]
  3. D. Bimberg and N. Ledentsov, J. Phys. Condens. Matter 15, R1063 (2003).
    [CrossRef]
  4. S. Fathpour, Z. Mi, and P. Bhattacharya, J. Phys. D 38, 2103 (2005).
    [CrossRef]
  5. M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007).
    [CrossRef]
  6. S. Fathpour, Z. Mi, and P. Bhattacharya, Appl. Phys. Lett. 85, 5164 (2004).
    [CrossRef]
  7. T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
    [CrossRef]
  8. H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef]
  9. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, Opt. Express 17, 11107 (2009).
    [CrossRef]
  10. S. W. Chang, T. R. Lin, and S. L. Chuang, Opt. Express 18, 15039 (2010).
    [CrossRef]
  11. C. Y. Lu, S. W. Chuang, S. H. Yang, and S. L. Chuang, Appl. Phys. Lett. 95, 233507 (2009).
    [CrossRef]
  12. G. E. Chang, C. Y. Lu, S. H. Yang, and S. L. Chuang, Opt. Lett. 35, 2373 (2010).
    [CrossRef]
  13. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 1995).
  14. J. Kim and S. L. Chuang, IEEE J. Quantum Electron. 42, 942 (2006).
    [CrossRef]
  15. J. S. Manning, J. Appl. Phys. 52, 3179 (1981).
    [CrossRef]
  16. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  17. C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, Opt. Lett. 36, 2447 (2011).
    [CrossRef]

2011 (1)

2010 (2)

2009 (2)

2007 (2)

M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007).
[CrossRef]

T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
[CrossRef]

2006 (2)

H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

J. Kim and S. L. Chuang, IEEE J. Quantum Electron. 42, 942 (2006).
[CrossRef]

2005 (1)

S. Fathpour, Z. Mi, and P. Bhattacharya, J. Phys. D 38, 2103 (2005).
[CrossRef]

2004 (1)

S. Fathpour, Z. Mi, and P. Bhattacharya, Appl. Phys. Lett. 85, 5164 (2004).
[CrossRef]

2003 (1)

D. Bimberg and N. Ledentsov, J. Phys. Condens. Matter 15, R1063 (2003).
[CrossRef]

2002 (1)

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

1982 (1)

Y. Arakawa and H. Sasaki, Appl. Phys. Lett. 40, 939 (1982).
[CrossRef]

1981 (1)

J. S. Manning, J. Appl. Phys. 52, 3179 (1981).
[CrossRef]

Alferov, Z. I.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Arakawa, Y.

M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007).
[CrossRef]

Y. Arakawa and H. Sasaki, Appl. Phys. Lett. 40, 939 (1982).
[CrossRef]

Badcock, T. J.

T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
[CrossRef]

Bhattacharya, P.

S. Fathpour, Z. Mi, and P. Bhattacharya, J. Phys. D 38, 2103 (2005).
[CrossRef]

S. Fathpour, Z. Mi, and P. Bhattacharya, Appl. Phys. Lett. 85, 5164 (2004).
[CrossRef]

Bimberg, D.

C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, Opt. Lett. 36, 2447 (2011).
[CrossRef]

D. Bimberg and N. Ledentsov, J. Phys. Condens. Matter 15, R1063 (2003).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Chang, G. E.

Chang, S. W.

Chuang, S. L.

C. Y. Lu, S. L. Chuang, A. Mutig, and D. Bimberg, Opt. Lett. 36, 2447 (2011).
[CrossRef]

G. E. Chang, C. Y. Lu, S. H. Yang, and S. L. Chuang, Opt. Lett. 35, 2373 (2010).
[CrossRef]

S. W. Chang, T. R. Lin, and S. L. Chuang, Opt. Express 18, 15039 (2010).
[CrossRef]

C. Y. Lu, S. W. Chuang, S. H. Yang, and S. L. Chuang, Appl. Phys. Lett. 95, 233507 (2009).
[CrossRef]

J. Kim and S. L. Chuang, IEEE J. Quantum Electron. 42, 942 (2006).
[CrossRef]

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 1995).

Chuang, S. W.

C. Y. Lu, S. W. Chuang, S. H. Yang, and S. L. Chuang, Appl. Phys. Lett. 95, 233507 (2009).
[CrossRef]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Ebe, H.

M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007).
[CrossRef]

Fathpour, S.

S. Fathpour, Z. Mi, and P. Bhattacharya, J. Phys. D 38, 2103 (2005).
[CrossRef]

S. Fathpour, Z. Mi, and P. Bhattacharya, Appl. Phys. Lett. 85, 5164 (2004).
[CrossRef]

Geluk, E. J.

Groom, K. M.

T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
[CrossRef]

Hatori, N.

M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007).
[CrossRef]

Hill, M. T.

Hopkinson, M.

T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
[CrossRef]

Ishida, M.

M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007).
[CrossRef]

Jiang, Q.

T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
[CrossRef]

Karouta, F.

Kim, J.

J. Kim and S. L. Chuang, IEEE J. Quantum Electron. 42, 942 (2006).
[CrossRef]

Kovsh, A. R.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

Ledentsov, N.

D. Bimberg and N. Ledentsov, J. Phys. Condens. Matter 15, R1063 (2003).
[CrossRef]

Ledentsov, N. N.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Leong, E. S. P.

Lin, T. R.

Liu, H. Y.

T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
[CrossRef]

Livshits, D. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Lu, C. Y.

Maleev, N. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Manning, J. S.

J. S. Manning, J. Appl. Phys. 52, 3179 (1981).
[CrossRef]

Marell, M.

Maximov, M. V.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Mi, Z.

S. Fathpour, Z. Mi, and P. Bhattacharya, J. Phys. D 38, 2103 (2005).
[CrossRef]

S. Fathpour, Z. Mi, and P. Bhattacharya, Appl. Phys. Lett. 85, 5164 (2004).
[CrossRef]

Mikhrin, S. S.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

Mowbray, D. J.

T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
[CrossRef]

Mutig, A.

Nakata, Y.

M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007).
[CrossRef]

Ning, C. Z.

Nötzel, R.

Oei, Y.

Royce, R. J.

T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
[CrossRef]

Sasaki, H.

Y. Arakawa and H. Sasaki, Appl. Phys. Lett. 40, 939 (1982).
[CrossRef]

Shernyakov, Y. M.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Skolnick, M. S.

T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
[CrossRef]

Smalbrugge, B.

Smit, M. K.

Sugawara, M.

M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007).
[CrossRef]

Sun, M.

Ustinov, V. M.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

van Veldhoven, P. J.

Vasil’ev, A. P.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Yamamoto, T.

M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007).
[CrossRef]

Yang, S. H.

G. E. Chang, C. Y. Lu, S. H. Yang, and S. L. Chuang, Opt. Lett. 35, 2373 (2010).
[CrossRef]

C. Y. Lu, S. W. Chuang, S. H. Yang, and S. L. Chuang, Appl. Phys. Lett. 95, 233507 (2009).
[CrossRef]

Zhu, Y.

Zhukov, A. E.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Arakawa and H. Sasaki, Appl. Phys. Lett. 40, 939 (1982).
[CrossRef]

S. Fathpour, Z. Mi, and P. Bhattacharya, Appl. Phys. Lett. 85, 5164 (2004).
[CrossRef]

T. J. Badcock, R. J. Royce, D. J. Mowbray, M. S. Skolnick, H. Y. Liu, M. Hopkinson, K. M. Groom, and Q. Jiang, Appl. Phys. Lett. 90, 111102 (2007).
[CrossRef]

C. Y. Lu, S. W. Chuang, S. H. Yang, and S. L. Chuang, Appl. Phys. Lett. 95, 233507 (2009).
[CrossRef]

Electron. Lett. (1)

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Electron. Lett. 38, 1104 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Kim and S. L. Chuang, IEEE J. Quantum Electron. 42, 942 (2006).
[CrossRef]

J. Appl. Phys. (2)

J. S. Manning, J. Appl. Phys. 52, 3179 (1981).
[CrossRef]

M. Ishida, M. Sugawara, T. Yamamoto, N. Hatori, H. Ebe, Y. Nakata, and Y. Arakawa, J. Appl. Phys. 101, 013108 (2007).
[CrossRef]

J. Phys. Condens. Matter (1)

D. Bimberg and N. Ledentsov, J. Phys. Condens. Matter 15, R1063 (2003).
[CrossRef]

J. Phys. D (1)

S. Fathpour, Z. Mi, and P. Bhattacharya, J. Phys. D 38, 2103 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef]

Other (2)

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 1995).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic diagram of sidewall metal-coated QD laser. The structure is composed of InAs QD active layer with AlGaAs as cladding layers; the waveguide is formed by SiNx and metal coatings. (b) Waveguide intrinsic loss induced by Ag, Cu, Al, and Au coating as a function of SiNx thicknesses calculated by the finite element method. A rapid increase is observed for thickness below 90 nm due to increasing field penetration into the metals. (c) Cross-section SEM of sidewall metal-coated QD laser 1.5 μm in width and 4.0 μm in height. The SiNx thickness is 100 nm, and the silver coating is 200 nm. (d) Corresponding field distribution (|E|2) inside the cavity calculated by the finite element method.

Fig. 2.
Fig. 2.

(a) Threshold current as a function of the substrate temperature for silver- and gold-coated and uncoated quantum-dot lasers. At elevated temperatures, silver- and gold-coated lasers have a much higher characteristic temperature than those of uncoated lasers. (b) Lasing spectrum of silver-coated quantum-dot lasers in a wide range of substrate temperature.

Fig. 3.
Fig. 3.

Comparison of threshold current dependence on temperature between CW and 0.01% pulse-mode operation for uncoated, Ag-coated, and Au-coated lasers. ΔT is extracted from experiment to calculate the thermal impedance.

Tables (2)

Tables Icon

Table 1. αi(cm1) and σ(W/(Km)) of Different Metals

Tables Icon

Table 2. Comparison of T0 and σTH for Different Lasers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PTH=IVPRAD

Metrics