Abstract

We present a 1.16-μm-radius disk cavity with ultrahigh quality (Q) factor by embedding the disk into a sunflower-type circular photonic crystal (CPC). The bandgap of the CPC reduces the bending loss of the whispering-gallery mode of the disk, leading to a simulated Q of 107, at least an order of magnitude higher than a bare disk of the same size. The design is experimentally verified with a record high loaded Q of 7.4×105 measured from an optimized device fabricated on a silicon-on-insulator substrate.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. Vahala, Nat. Photon. 6, 369 (2012).
    [CrossRef]
  2. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, Opt. Express 19, 21989 (2011).
    [CrossRef]
  3. X. Sun, X. Zhang, and H. X. Tang, Appl. Phys. Lett. 100, 173116 (2012).
    [CrossRef]
  4. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, Opt. Lett. 32, 826 (2007).
    [CrossRef]
  5. L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
    [CrossRef]
  6. J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, Opt. Express 17, 23323 (2009).
    [CrossRef]
  7. K. Srinivasan, M. Borselli, and O. Painter, Opt. Express 14, 1094 (2006).
    [CrossRef]
  8. Q. Xu, D. Fattal, and R. G. Beausoleil, Opt. Express 16, 4309 (2008).
    [CrossRef]
  9. N. Moll, T. Stoeferle, S. Schoenenberger, and R. F. Mahrt, Opt. Express 17, 20998 (2009).
    [CrossRef]
  10. J. Scheuer and A. Yariv, Opt. Express 11, 2736 (2003).
    [CrossRef]
  11. X. Sun and A. Yariv, Opt. Express 16, 9155 (2008).
    [CrossRef]
  12. T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, Appl. Phys. Lett. 79, 4289 (2001).
    [CrossRef]
  13. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
    [CrossRef]
  14. H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, Opt. Express 12, 1708 (2004).
    [CrossRef]
  15. J. Scheuer and A. Yariv, Phys. Rev. E 70, 036603 (2004).
    [CrossRef]
  16. P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, Appl. Phys. Lett. 90, 151125 (2007).
    [CrossRef]
  17. D. Chang, J. Scheuer, and A. Yariv, Opt. Express 13, 9272 (2005).
    [CrossRef]
  18. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, Opt. Express 18, 19541 (2010).
    [CrossRef]

2012

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. Vahala, Nat. Photon. 6, 369 (2012).
[CrossRef]

X. Sun, X. Zhang, and H. X. Tang, Appl. Phys. Lett. 100, 173116 (2012).
[CrossRef]

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

2011

2010

2009

2008

2007

2006

2005

2004

2003

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

J. Scheuer and A. Yariv, Opt. Express 11, 2736 (2003).
[CrossRef]

2001

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, Appl. Phys. Lett. 79, 4289 (2001).
[CrossRef]

Adibi, A.

Aitchison, J. S.

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

Beausoleil, R. G.

Borselli, M.

Bristow, A. D.

Chak, P.

Chang, D.

Chen, H.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, Appl. Phys. Lett. 79, 4289 (2001).
[CrossRef]

Chen, T.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. Vahala, Nat. Photon. 6, 369 (2012).
[CrossRef]

Cheung, K. C.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Chrostowski, L.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Deppe, D.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, Appl. Phys. Lett. 79, 4289 (2001).
[CrossRef]

Elston, S.

Fan, J.-H.

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

Fattal, D.

Fernandes, G.

Flueckiger, J.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Grist, S.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Iyer, R.

Jaeger, N. A. F.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. Vahala, Nat. Photon. 6, 369 (2012).
[CrossRef]

Kim, G. H.

Lee, H.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. Vahala, Nat. Photon. 6, 369 (2012).
[CrossRef]

Lee, P.-T.

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

Lee, Y. H.

Lentine, A. L.

Li, J.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. Vahala, Nat. Photon. 6, 369 (2012).
[CrossRef]

Li, Q.

Liang, Z.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Liu, Z.

Lu, T.-W.

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

Mahrt, R. F.

Moll, N.

Nie, B.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

Notomi, M.

Ouellet, E.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Painter, O.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. Vahala, Nat. Photon. 6, 369 (2012).
[CrossRef]

K. Srinivasan, M. Borselli, and O. Painter, Opt. Express 14, 1094 (2006).
[CrossRef]

Ratner, D. M.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Ryu, H. Y.

Scherer, A.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, Appl. Phys. Lett. 79, 4289 (2001).
[CrossRef]

Scheuer, J.

Schmidt, S. A.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Schoenenberger, S.

Shainline, J.

Shi, W.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Sipe, J. E.

Smirl, A. L.

Soltani, M.

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

Srinivasan, K.

Stoeferle, T.

Sun, X.

X. Sun, X. Zhang, and H. X. Tang, Appl. Phys. Lett. 100, 173116 (2012).
[CrossRef]

X. Sun and A. Yariv, Opt. Express 16, 9155 (2008).
[CrossRef]

Tang, H. X.

X. Sun, X. Zhang, and H. X. Tang, Appl. Phys. Lett. 100, 173116 (2012).
[CrossRef]

Trotter, D. C.

Tsai, F.-M.

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

Vahala, K.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. Vahala, Nat. Photon. 6, 369 (2012).
[CrossRef]

van Driel, H. M.

Vuckovic, J.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, Appl. Phys. Lett. 79, 4289 (2001).
[CrossRef]

Wang, X.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Watts, M. R.

Webb, M.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Xu, J.

Xu, Q.

Yang, K.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. Vahala, Nat. Photon. 6, 369 (2012).
[CrossRef]

Yang, Z.

Yariv, A.

Yegnanarayanan, S.

Yoshie, T.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, Appl. Phys. Lett. 79, 4289 (2001).
[CrossRef]

Young, R. W.

Yun, H.

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Zhang, X.

X. Sun, X. Zhang, and H. X. Tang, Appl. Phys. Lett. 100, 173116 (2012).
[CrossRef]

Zia, R.

Zortman, W. A.

Appl. Phys. Lett.

X. Sun, X. Zhang, and H. X. Tang, Appl. Phys. Lett. 100, 173116 (2012).
[CrossRef]

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, Appl. Phys. Lett. 79, 4289 (2001).
[CrossRef]

P.-T. Lee, T.-W. Lu, J.-H. Fan, and F.-M. Tsai, Appl. Phys. Lett. 90, 151125 (2007).
[CrossRef]

Nat. Photon.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. Vahala, Nat. Photon. 6, 369 (2012).
[CrossRef]

Nature

Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

J. Scheuer and A. Yariv, Phys. Rev. E 70, 036603 (2004).
[CrossRef]

Proc. SPIE

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F. Jaeger, Proc. SPIE 8236, 823620 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Illustration of a sunflower-type circular photonic crystal (CPC) embedding a disk. (b) Simulated transmission spectrum of a perfect CPC lattice (dashed black curve) and a CPC lattice embedding a disk (solid red curve). Each resonance peak is labeled with its radial and azimuthal mode number (m, n). (c) Finite-element-simulated mode profile (Hz component) for the labeled modes in (b).

Fig. 2.
Fig. 2.

3D-FDTD-simulated Q factor (circles) and normalized resonance frequency a/λ (squares) of WGM (1, 9) as a function of (a) lattice constant a, (b) filling factor r/a, (c) gap g between the disk and the surrounding circular photonic crystal, and (d) disk radius R. The dashed curve with triangles in (d) represents the simulated Q factor for the same mode of a bare disk.

Fig. 3.
Fig. 3.

(a) Optical microscope image of a fabricated device. On the two sides are two grating couplers for coupling light onto and out of the chip. (b) Tilted-view scanning electron microscope (SEM) image of the sunflower-type circular photonic crystal with an embedded disk. Magenta arrows indicate the route of light propagation through the device. (c)–(e) Zoomed-in SEM image of a waveguide taper, a stress-releasing clamp, and the embedded disk, respectively. Scale bar is (a) 50 μm, (b) 5 μm, and (c)–(e) 1 μm, respectively.

Fig. 4.
Fig. 4.

(a) Measured optical transmission of an optimized device. Left peak: WGM (1, 9); right peak: WGM (2, 6). Inset: Lorentzian fit of the zoomed-in spectrum of the WGM (1, 9) revealing a loaded Q of 7.4×105. (b) Illustration of the coupling distance, defined as the number of holes K between the disk and the end of photonic crystal waveguide. (c) Dependence of the normalized optical transmission (squares) and Q factor (circles) on the coupling distance K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

xN,l=aNcos(2lπ6N),yN,l=aNsin(2lπ6N),

Metrics