Abstract

Color digital holography utilizing the Doppler effect is proposed. The time variation of holograms produced by superposing images at three wavelengths is recorded using a high-speed monochromatic imaging sensor. The complex amplitude at each wavelength can be extracted from frequency information contained in the Fourier transforms of the recorded holograms. An image of the object is reconstructed by the angular spectrum method. Reconstructed monochromatic images at the three wavelengths are combined to produce a color image for display.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
    [CrossRef]
  2. U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
  3. I. Yamaguchi, T. Matsumura, and J. Kato, Opt. Lett. 27, 1108 (2002).
    [CrossRef]
  4. B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, Opt. Lett. 30, 144 (2005).
    [CrossRef]
  5. P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. Li, Appl. Opt. 49, 320 (2010).
    [CrossRef]
  6. J. Kuhn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, Opt. Express 15, 7231 (2007).
    [CrossRef]
  7. J. Desse, P. Picart, and P. Tankam, Opt. Express 16, 5471 (2008).
    [CrossRef]
  8. N. Demoli, D. Vukicevic, and M. Torzynski, Opt. Express 11, 767 (2003).
    [CrossRef]
  9. Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, Opt. Lett. 35, 1548 (2010).
    [CrossRef]
  10. D. Barada, T. Kiire, J. Sugisaka, S. Kawata, and T. Yatagai, Appl. Opt. 50, H237 (2011).
    [CrossRef]
  11. Y. Cheng and J. Wyant, Appl. Opt. 24, 804 (1985).
    [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co., 2005), pp. 57–61.

2011 (1)

2010 (2)

2008 (1)

2007 (1)

2005 (1)

2003 (1)

2002 (1)

1985 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Alfieri, D.

Barada, D.

Charriere, F.

Cheng, Y.

Colomb, T.

Cuche, E.

De Nicola, S.

Demoli, N.

Depeursinge, C.

Desse, J.

Desse, J. M.

Emery, Y.

Ferraro, P.

Finizio, A.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co., 2005), pp. 57–61.

Hong, S. H.

Javidi, B.

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).

Kato, J.

Kawata, S.

Kiire, T.

Kikuchi, Y.

Kuhn, J.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Li, J.

Marquet, P.

Matsumura, T.

Montfort, F.

Mounier, D.

Picart, P.

Pierattini, G.

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).

Sugisaka, J.

Tankam, P.

Torzynski, M.

Vukicevic, D.

Wyant, J.

Yamaguchi, I.

Yatagai, T.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical system for color digital holography using Doppler phase shifting.

Fig. 2.
Fig. 2.

Image of a Japanese five-yen coin (a copper–zinc alloy) illuminated by white light.

Fig. 3.
Fig. 3.

Time variation of the intensity at a central pixel in the hologram. The intensity is varied by frequency modulation due to the Doppler effect generated by the relative movement between the object and the reference mirror.

Fig. 4.
Fig. 4.

Fourier spectrum obtained from 512 hologram images with frequency modulation. The beat frequency at each wavelength is determined from the peak intensity; the beat frequencies are 46.9, 55.7, and 73.2 Hz for red, green, and blue, respectively. The complex amplitude of the object can be extracted from the inverse Fourier transform at each beat frequency.

Fig. 5.
Fig. 5.

Reconstructed image of a Japanese five-yen coin. A monochromatic focused image at a distance of 740 mm is reconstructed from the complex amplitude at (a) red, (b) green, and (c) blue. (d), (e) Color images obtained by combining the three monochromatic images, which are defocused and focused at distances of z=710 and 740 mm, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(x,y,t)=|n=13UO,n(x,y,t)+n=13UR,n(t)|2,
G(x,y,ω)=n=13{an(x,y)δ(ω)+bn(x,y)exp[iΔϕn(x,y)]δ(ωΔωn)+bn(x,y)exp[iΔϕn(x,y)]δ(ω+Δωn)},
UO,n=F1{F[UO,n(x,y)]exp[ikz,n(x,y)d]},

Metrics