Abstract

We use the Pancharatnam–Berry phase as a multifunctional tool for low-coherence interferometry. This geometric phase shift enables instantaneous retrieval of the quadrature components of the complex interferometric signal. The phase shift is independent of wavelength and allows for a complex conjugate suppression of 40 dB for an optical bandwidth of 115 nm. Furthermore, this paper investigates the versatility of the geometric phase to perform polarization sensitive measurements. The Jones vector of the sample was obtained numerically, allowing sample birefringence and optical axis calculation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef]
  2. J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
    [CrossRef]
  3. R. I. MacDonald, Appl. Opt. 20, 1840 (1981).
    [CrossRef]
  4. G. Haeusler and M. W. Lindner, J. Biomed. Opt. 3, 21 (1998).
    [CrossRef]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, Opt. Express 11, 2953 (2003).
    [CrossRef]
  6. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 114 (2000).
    [CrossRef]
  7. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, Opt. Express 9, 780 (2001).
    [CrossRef]
  8. R. A. Leitgeb, C. K. Hitzenberger, T. Bajraszewski, and A. F. Fercher, Opt. Lett. 28, 2201 (2003).
    [CrossRef]
  9. S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A 44, 247 (1956).

2003

2001

2000

1998

G. Haeusler and M. W. Lindner, J. Biomed. Opt. 3, 21 (1998).
[CrossRef]

1996

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

1981

1956

S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A 44, 247 (1956).

Bajraszewski, T.

Bouma, B. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Chen, Z.

de Boer, J. F.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Goetzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Haeusler, G.

G. Haeusler and M. W. Lindner, J. Biomed. Opt. 3, 21 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Iftimia, N.

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Lindner, M. W.

G. Haeusler and M. W. Lindner, J. Biomed. Opt. 3, 21 (1998).
[CrossRef]

MacDonald, R. I.

Nelson, J. S.

Pancharatnam, S.

S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A 44, 247 (1956).

Pircher, M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Saxer, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Tearney, G. J.

Wang, H. W.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

Xiang, S.

Yun, S. H.

Zhao, Y.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, IEEE J. Sel. Top. Quantum Electron. 2, 1017 (1996).
[CrossRef]

J. Biomed. Opt.

G. Haeusler and M. W. Lindner, J. Biomed. Opt. 3, 21 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Indian Acad. Sci. Sect. A

S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A 44, 247 (1956).

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. BOA, booster optical amplifier; FFP, fiber Fabry–Perot; FRM, Faraday rotating mirror; Iso, isolator; PC, polarization controller; FS, fiber stretcher; BPD, balanced photodiode; FC, fiber collimator; P, polarizer; BS, 50/50 beam splitter; QWP, quarter-wave plate; Disp, dispersion compensation; M, mirror; FR, Fresnel rhomb; L, lens; AWG, arbitrary waveform generator.

Fig. 2.
Fig. 2.

Left: quadrature components as a function of wavelength. Right: Channel A versus Channel B, with wavelength encoded in color.

Fig. 3.
Fig. 3.

Depth-resolved interferometric signal. The mirror term suppression ratio is >40dB for a 115 nm optical bandwidth.

Fig. 4.
Fig. 4.

(a) Measurement (dots) and theoretical (solid curves) parameters, Fm and Fth, as a function of set retardation for θ=20°. (b) Poincaré sphere showing measured Stokes parameters (colored dots), compared with theory (colored solid line). Measured retardation as a function of set retardation for (c) θ=20° and (d) for other optical axis orientations.

Fig. 5.
Fig. 5.

Left: wave-plate retardation and optical axis orientation as a function of set optical axis orientation. Right: Poincaré sphere showing measured Stokes parameters as a function of optical axis orientation.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

J(ν)=[Es(ν)exp(jknz)Er(ν)].
I(ν)=12[Es2+Er2+2EsErcos(knz+2Ψπ2)].
JA(ν)=Jr(ν)+[MBSMQW(π/4)Js(ν)],
JB(ν)=Jr(ν)+[MQW(π/4)Js(ν)],
IAth(ν)=η|MP(Ψ)MQW(π/4)JA(ν)|2,
IBth(ν)=η|MP(π/4)JB(ν)|2,
I¯Ath(ν)=|I^A(ν)|=|IACAth(ν)+jH{IACAth(ν)}|,
I¯Bth(ν)=|I^B(ν)|=|IACBth(ν)+jH{IACBth(ν)}|,
Δth=arg{I^A}arg{I^B}.
Xi+1=Xiκ(YthX)i1Ωi,
δ=12arccos(Sts·S3|Sts||S3|),
θ=12arccos[(Sts×S3)·S1|Sts×S3||S1|]π2,

Metrics