Abstract

We introduce a new cascaded four-wave mixing technique that scales up the bandwidth of frequency combs generated by phase modulation of a continuous-wave (CW) laser while simultaneously enhancing the spectral flatness. As a result, we demonstrate a 10 GHz frequency comb with over 100 lines in a 10 dB bandwidth in which a record 75 lines are within a flatness of 1 dB. The cascaded four-wave mixing process increases the bandwidth of the initial comb generated by the modulation of a CW laser by a factor of five. The broadband comb has approximately quadratic spectral phase, which is compensated upon propagation in single-mode fiber, resulting in a 10 GHz train of 940 fs pulses.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
    [CrossRef]
  2. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, J. Lightwave Technol. 24, 2311 (2006).
    [CrossRef]
  3. J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
    [CrossRef]
  4. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
    [CrossRef]
  5. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
    [CrossRef]
  6. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, J. Lightwave Technol. 21, 2705 (2003).
    [CrossRef]
  7. V. Torres-Company, J. Lancis, and P. Andrés, Opt. Lett. 33, 1822 (2008).
    [CrossRef]
  8. B. H. Kolner and M. Nazarathy, Opt. Lett. 14, 630 (1989).
    [CrossRef]
  9. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
    [CrossRef]
  10. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, Opt. Express 16, 2520, 2008.
    [CrossRef]
  11. R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), p. 1.
  12. K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773, 2000.
    [CrossRef]
  13. C. S. Bres, N. Alic, E. Myslevits, and S. Radic, J. Lightwave Technol. 27, 356, 2009.
    [CrossRef]
  14. P. Devgan, R. Tang, V. S. Grigoryan, and P. KumarJ. Lightwave Technol. 24, 3677, 2006.
    [CrossRef]
  15. V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Express 18, 18171, 2010.
    [CrossRef]

2012

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

2010

2009

2008

2007

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

2006

2003

2000

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773, 2000.
[CrossRef]

1989

Abe, M.

Alic, N.

Andrés, P.

Bres, C. S.

Capmany, J.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

Devgan, P.

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

Fontaine, N. K.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), p. 1.

Fujiwara, M.

Grigoryan, V. S.

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

Heritage, J. P.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), p. 1.

Huang, C. B.

C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, Opt. Express 16, 2520, 2008.
[CrossRef]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

Iwatsuki, K.

Jiang, Z.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

Kani, J.

Kobayashi, T.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

Kolner, B. H.

B. H. Kolner and M. Nazarathy, Opt. Lett. 14, 630 (1989).
[CrossRef]

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), p. 1.

Kubota, H.

K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773, 2000.
[CrossRef]

Kumar, P.

Lancis, J.

Leaird, D. E.

Long, C. M.

Masuda, H.

Morimoto, A.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

Morioka, T.

Murata, H.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

Myslevits, E.

Nakazawa, M.

K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773, 2000.
[CrossRef]

Nazarathy, M.

Novak, D.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

Ohara, T.

Park, S. G.

Radic, S.

Scott, R. P.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), p. 1.

Supradeepa, V. R.

Suzuki, H.

Takachio, N.

Takahashi, H.

Takara, H.

Tamura, K. R.

K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773, 2000.
[CrossRef]

Tang, R.

Teshima, M.

Torres-Company, V.

Weiner, A. M.

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
[CrossRef]

Yamamoto, S.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

Yamamoto, T.

Yoo, S. J. B.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), p. 1.

IEEE J. Quantum Electron.

K. R. Tamura, H. Kubota, and M. Nakazawa, IEEE J. Quantum Electron. 36, 773, 2000.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

J. Lightwave Technol.

Nat. Photon.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), p. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Time domain waveform and sinusoidal spectral phase in a cascaded intensity and a phase-modulator-based comb generator.

Fig. 2.
Fig. 2.

(a) Experimental setup: CW, continuous wave laser; IM, intensity modulator; PM, phase modulator; SMF, single-mode fiber; HNLF, highly nonlinear fiber; Amp, fiber amplifier; and BPF, bandpass filter; and (b) bandwidth scaling of the comb and enhanced spectral flattening.

Fig. 3.
Fig. 3.

Simulation showing bandwidth scaled flat comb generation.

Fig. 4.
Fig. 4.

Experimental results: (a) Input comb (purely phase-modulated second comb shown in the inset); (b) comb generated by the first order FWM term; (c) comb generated by the second order FWM term; and (d) second-order comb in log scale.

Fig. 5.
Fig. 5.

(a) Measured spectral phase of the comb from the second-order FWM term and quadratic fit and (b) measured time domain intensity of the comb after phase correction and simulated ideal time domain intensity assuming a flat spectral phase for the measured spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[a1(t)exp(jϕ(t))2][exp(jϕ(t))*]=a1(t)2exp(3jϕ(t)).
[a1(t)2exp(3jϕ(t))][a1(t)exp(jϕ(t))][exp(jϕ(t))*]=a1(t)3exp(5jϕ(t)).

Metrics