Abstract

This Letter describes a dual-amplitude modulation technique incorporated into a double reflection extrinsic-type fiber Fabry-Perot interferometer to measure periodic, nonperiodic as well as quasi-static displacements. The modulation scheme simultaneously maintains the interference signal pair in quadrature and provides a reference signal for displacements inferior to a quarter of the source wavelength. The control and phase demodulation of the interferometer carried out via software enable quasi-real-time measurement and facilitates sensor alignment. The sensor system can be exploited in the low frequency range from 103 to 500Hz and has a resolution better than 2.2 nm, targeting applications in geophysics.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Kirkendall and A. Dandridge, J. Phys. D 37, R197 (2004).
    [CrossRef]
  2. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, Opt. Lett. 33, 536 (2008).
    [CrossRef]
  3. O. Sasaki, T. Yoshida, and T. Suzuki, Appl. Opt. 30, 3617 (1991).
    [CrossRef]
  4. P. Sandoz, T. Gharbi, and G. Tribillon, Opt. Commun. 132, 227 (1996).
    [CrossRef]
  5. X. J. Feng, C. X. Zhang, S. Liang, C. S. Li, and C. Y. Zhang, Microw. Opt. Technol. Lett. 53, 20 (2011).
    [CrossRef]
  6. A. A. Kulkarni, S. Battacharya, and A. Prabhakar, Appl. Opt. 50, 4450 (2011).
    [CrossRef]
  7. R. C. Addy, A. W. Palmer, and K. T. V. Grattan, J. Lightwave Technol. 14, 2672 (1996).
    [CrossRef]
  8. H. Shalom, A. Zadok, M. Tur, W. D. Cornwell, and I. Andonovic, IEEE J. Quantum Electron. 34, 1816(1998).
    [CrossRef]
  9. M. A. Zumberge, J. Berger, M. A. Dzieciuch, and R. L. Parker, Appl. Opt. 43, 771 (2004).
    [CrossRef]

2011

X. J. Feng, C. X. Zhang, S. Liang, C. S. Li, and C. Y. Zhang, Microw. Opt. Technol. Lett. 53, 20 (2011).
[CrossRef]

A. A. Kulkarni, S. Battacharya, and A. Prabhakar, Appl. Opt. 50, 4450 (2011).
[CrossRef]

2008

2004

1998

H. Shalom, A. Zadok, M. Tur, W. D. Cornwell, and I. Andonovic, IEEE J. Quantum Electron. 34, 1816(1998).
[CrossRef]

1996

P. Sandoz, T. Gharbi, and G. Tribillon, Opt. Commun. 132, 227 (1996).
[CrossRef]

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, J. Lightwave Technol. 14, 2672 (1996).
[CrossRef]

1991

Addy, R. C.

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, J. Lightwave Technol. 14, 2672 (1996).
[CrossRef]

Andonovic, I.

H. Shalom, A. Zadok, M. Tur, W. D. Cornwell, and I. Andonovic, IEEE J. Quantum Electron. 34, 1816(1998).
[CrossRef]

Battacharya, S.

Berger, J.

Cornwell, W. D.

H. Shalom, A. Zadok, M. Tur, W. D. Cornwell, and I. Andonovic, IEEE J. Quantum Electron. 34, 1816(1998).
[CrossRef]

Dandridge, A.

C. K. Kirkendall and A. Dandridge, J. Phys. D 37, R197 (2004).
[CrossRef]

Dzieciuch, M. A.

Feng, X. J.

X. J. Feng, C. X. Zhang, S. Liang, C. S. Li, and C. Y. Zhang, Microw. Opt. Technol. Lett. 53, 20 (2011).
[CrossRef]

Gharbi, T.

P. Sandoz, T. Gharbi, and G. Tribillon, Opt. Commun. 132, 227 (1996).
[CrossRef]

Grattan, K. T. V.

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, J. Lightwave Technol. 14, 2672 (1996).
[CrossRef]

Han, Y. K.

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, J. Phys. D 37, R197 (2004).
[CrossRef]

Kulkarni, A. A.

Li, C. S.

X. J. Feng, C. X. Zhang, S. Liang, C. S. Li, and C. Y. Zhang, Microw. Opt. Technol. Lett. 53, 20 (2011).
[CrossRef]

Liang, S.

X. J. Feng, C. X. Zhang, S. Liang, C. S. Li, and C. Y. Zhang, Microw. Opt. Technol. Lett. 53, 20 (2011).
[CrossRef]

Palmer, A. W.

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, J. Lightwave Technol. 14, 2672 (1996).
[CrossRef]

Parker, R. L.

Prabhakar, A.

Sandoz, P.

P. Sandoz, T. Gharbi, and G. Tribillon, Opt. Commun. 132, 227 (1996).
[CrossRef]

Sasaki, O.

Shalom, H.

H. Shalom, A. Zadok, M. Tur, W. D. Cornwell, and I. Andonovic, IEEE J. Quantum Electron. 34, 1816(1998).
[CrossRef]

Suzuki, T.

Tribillon, G.

P. Sandoz, T. Gharbi, and G. Tribillon, Opt. Commun. 132, 227 (1996).
[CrossRef]

Tsai, H. L.

Tur, M.

H. Shalom, A. Zadok, M. Tur, W. D. Cornwell, and I. Andonovic, IEEE J. Quantum Electron. 34, 1816(1998).
[CrossRef]

Wei, T.

Xiao, H.

Yoshida, T.

Zadok, A.

H. Shalom, A. Zadok, M. Tur, W. D. Cornwell, and I. Andonovic, IEEE J. Quantum Electron. 34, 1816(1998).
[CrossRef]

Zhang, C. X.

X. J. Feng, C. X. Zhang, S. Liang, C. S. Li, and C. Y. Zhang, Microw. Opt. Technol. Lett. 53, 20 (2011).
[CrossRef]

Zhang, C. Y.

X. J. Feng, C. X. Zhang, S. Liang, C. S. Li, and C. Y. Zhang, Microw. Opt. Technol. Lett. 53, 20 (2011).
[CrossRef]

Zumberge, M. A.

Appl. Opt.

IEEE J. Quantum Electron.

H. Shalom, A. Zadok, M. Tur, W. D. Cornwell, and I. Andonovic, IEEE J. Quantum Electron. 34, 1816(1998).
[CrossRef]

J. Lightwave Technol.

R. C. Addy, A. W. Palmer, and K. T. V. Grattan, J. Lightwave Technol. 14, 2672 (1996).
[CrossRef]

J. Phys. D

C. K. Kirkendall and A. Dandridge, J. Phys. D 37, R197 (2004).
[CrossRef]

Microw. Opt. Technol. Lett.

X. J. Feng, C. X. Zhang, S. Liang, C. S. Li, and C. Y. Zhang, Microw. Opt. Technol. Lett. 53, 20 (2011).
[CrossRef]

Opt. Commun.

P. Sandoz, T. Gharbi, and G. Tribillon, Opt. Commun. 132, 227 (1996).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of dual-modulation fiber FPI with double reflection (ISO, optical isolator; TEC, temperature controller; DAQ, 16-bit data acquisition unit; PZT, piezo-electric transducer).

Fig. 2.
Fig. 2.

Squarewave modulation to achieve quadrature for phase demodulation: (a) multiplexed interference signal containing Vx and Vy, (b) squarewave modulation at 25 kHz, (c) demultiplexed Vx and Vy for 5μmdisplacement, and (d) Lissajous phase diagram of Vy versus Vx via arctan function.

Fig. 3.
Fig. 3.

Simultaneous f1 and f2 modulations for stationary T and during sensor alignment; (a) multiplexed Vx and Vy; (b) f1 superimposed onto f2; (c) demultiplexed Vx and Vy; (d) equivalent displacement; (e) Vy versus Vx (>2π trajectory).

Fig. 4.
Fig. 4.

Fiber FPI versus PZT displacements over a 2 nm–5 µm range. Vertical bars, FPI resolution 2.23nm; horizontal bars, PZT precision 2nm in step mode. Inset: absolute error between both devices (error 46nm obtained at displacement of 5 µm).

Fig. 5.
Fig. 5.

Fiber FPI setup using stainless steel cage for differential displacements over 16.5 min.

Fig. 6.
Fig. 6.

Differential displacements for variation of 0.098 °C over 1h corresponding to a 25.6 nm thermal expansion of steel cage.

Metrics