Abstract

Silica optical resonators with high quality factors, small mode volumes, and high refractive index contrast are desirable in many applications throughout the fundamental and applied sciences. However, these parameters are not easily modified in plain silica devices. In the present work, we theoretically and experimentally demonstrate the use of high refractive index sol-gel coatings to achieve a significant reduction in mode volume of silica toroids while maintaining high quality factors. In addition to tuning the mode volume, the presence of the coating changes both the location and shape of the optical field.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. F. Xu and M. Lipson, Opt. Express 15, 924 (2007).
    [CrossRef]
  2. A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
    [CrossRef]
  3. M. Han and A. Wang, Opt. Lett. 32, 1800 (2007).
    [CrossRef]
  4. H.-S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
    [CrossRef]
  5. F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, Opt. Lett. 35, 1509 (2010).
    [CrossRef]
  6. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).
    [CrossRef]
  7. M. Oxborrow, Proc. SPIE 6452, J4520 (2007).
    [CrossRef]
  8. M. I. Cheema and A. G. Kirk, COMSOL Conference (Boston, 2010).
  9. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
    [CrossRef]
  10. B. A. Rose, A. J. Maker, and A. M. Armani, Opt. Mater. Express 2, 671 (2012).
    [CrossRef]
  11. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef]
  12. X. Zhang, H.-S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010).
    [CrossRef]
  13. L. Yang and K. J. Vahala, Opt. Lett. 28, 592 (2003).
    [CrossRef]
  14. H.-S. Hsu, C. Cai, and A. M. Armani, Opt. Express 17, 23265 (2009).
    [CrossRef]
  15. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
    [CrossRef]

2012 (1)

2010 (4)

2009 (1)

2007 (3)

2005 (1)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).
[CrossRef]

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

L. Yang and K. J. Vahala, Opt. Lett. 28, 592 (2003).
[CrossRef]

1996 (2)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
[CrossRef]

Armani, A. M.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Bailey, R. C.

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

Bramati, A.

Cai, C.

Cheema, M. I.

M. I. Cheema and A. G. Kirk, COMSOL Conference (Boston, 2010).

Choi, H.-S.

H.-S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
[CrossRef]

X. Zhang, H.-S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010).
[CrossRef]

Cingolani, R.

De Vittorio, M.

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Gorodetsky, M. L.

Han, M.

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Hsu, H.-S.

Ilchenko, V. S.

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Kirk, A. G.

M. I. Cheema and A. G. Kirk, COMSOL Conference (Boston, 2010).

Lefevre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Lipson, M.

Maker, A. J.

Martiradonna, L.

Oxborrow, M.

M. Oxborrow, Proc. SPIE 6452, J4520 (2007).
[CrossRef]

Pisanello, F.

Qualtieri, A.

Raimond, J. M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Rose, B. A.

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Savchenkov, A. A.

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Stomeo, T.

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

L. Yang and K. J. Vahala, Opt. Lett. 28, 592 (2003).
[CrossRef]

Wang, A.

Washburn, A. L.

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Xu, Q. F.

Yang, L.

Zhang, X.

H.-S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
[CrossRef]

X. Zhang, H.-S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010).
[CrossRef]

Analyst (1)

A. L. Washburn and R. C. Bailey, Analyst 136, 227 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

X. Zhang, H.-S. Choi, and A. M. Armani, Appl. Phys. Lett. 96, 153304 (2010).
[CrossRef]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. A (2)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A 71, 013817 (2005).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, Phys. Rev. A 54, R1777 (1996).
[CrossRef]

Proc. SPIE (1)

M. Oxborrow, Proc. SPIE 6452, J4520 (2007).
[CrossRef]

Other (1)

M. I. Cheema and A. G. Kirk, COMSOL Conference (Boston, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The sol-gel coated toroidal cavity. (a) Rendering of the cavity indicating the location of the optical mode and the conformal nature of the sol-gel coating. (b) Scanning electron micrograph of a TEOS coated microtoroid.

Fig. 2.
Fig. 2.

Theoretically calculated (a) mode volume and (b) mode volume in the sol-gel film, as a function of toroid diameter at λ=1300nm. As the coating refractive index increases, the optical mode is compressed and shifts into the coating. This shift and compression is also evident in the normalized optical field intensity plots; (c) n=1.4479; (d) n=1.5066; and (e) n=1.5895 coated 20 μm diameter toroids.

Fig. 3.
Fig. 3.

Theoretically calculated (lines) and experimentally measured (points) Q as a function of device diameter for (a) n=1.4479-coated; (b) n=1.5066-coated; and (c) n=1.5895-coated toroidal resonators. The insets show representative normalized transmission spectra for resonances near 1300 nm; (d) The value of Q/Vm versus device diameter. At very small microtoroid diameters, the presence of the high index coating allows higher Q/Vm ratios to be achieved.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Fp=34π2QVm(λneff)3,
Vm=VQε(r⃗)|E⃗|2d3r⃗|Emax|2,
Q1=Qrad1+Qs.s1+Qcont1+Qmat1+Qcoup1.

Metrics