Abstract

We report on an internally Q-switched self-optical parametric oscillator (SOPO) based on a monolithic two-dimensional (2D) periodically poled Nd:MgO:LiNbO3 (Nd:MgO:PPLN) integrating three device functionalities of a laser gain medium, an electro-optic Bragg Q-switch, and an optical parametric gain medium (OPGM). The quasi-phase-matching conditions required by the Bragg Q-switch and OPGM are both satisfied in the 2D nonlinear photonic crystal (NPC) structure formed in the Nd:MgO:PPLN. A 1525 nm signal with a pulse energy of 3.3μJ (>350W peak power) was obtained from the SOPO at 8.5 W diode pump power. An off-angle signal at 1612 nm, amplified by a unique gain-enhancement effect in this 2D NPC, was also observed. Tuning of the SOPO in the eye-safe region was demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, J. Opt. Soc. Am. B 3, 140 (1986).
    [CrossRef]
  2. Y. H. Chen, Y. Y. Lin, C. H. Chen, and Y. C. Huang, Opt. Lett. 30, 1045 (2005).
    [CrossRef]
  3. Y. Y. Lin, S. T. Lin, G. W. Chang, A. C. Chiang, Y. C. Huang, and Y. H. Chen, Opt. Lett. 32, 545 (2007).
    [CrossRef]
  4. W. K. Chang, Y. H. Chen, H. H. Chang, J. W. Chang, C. Y. Chen, Y. Y. Lin, Y. C. Huang, and S. T. Lin, Opt. Express 19, 23643 (2011).
    [CrossRef]
  5. Y. H. Chen, Y. C. Chang, C. H. Lin, and T. Y. Chung, Opt. Express 16, 2048 (2008).
    [CrossRef]
  6. L. Barraco, A. Grisard, E. Lallier, P. Bourdon, and J.-P. Pocholle, Opt. Lett. 27, 1540 (2002).
    [CrossRef]
  7. A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984), Chap. 9.
  8. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  9. U. Schlarb and K. Betzler, Phys. Rev. B 50, 751 (1994).
    [CrossRef]
  10. H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
    [CrossRef]
  11. Y. Chen, H. Zhan, and B. Zhou, Appl. Phys. Lett. 93, 222902 (2008).
    [CrossRef]
  12. H. C. Liu and A. H. Kung, Opt. Express 16, 9714 (2008).
    [CrossRef]
  13. A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, Appl. Opt. 41, 7052 (2002).
    [CrossRef]

2011

2008

2007

2005

2003

H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
[CrossRef]

2002

1994

U. Schlarb and K. Betzler, Phys. Rev. B 50, 751 (1994).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1986

Barraco, L.

Bass, M.

Betzler, K.

U. Schlarb and K. Betzler, Phys. Rev. B 50, 751 (1994).
[CrossRef]

Bourdon, P.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, J. Opt. Soc. Am. B 3, 140 (1986).
[CrossRef]

Chang, G. W.

Chang, H. H.

Chang, J. W.

Chang, W. K.

Chang, Y. C.

Chen, C. H.

Chen, C. Y.

Chen, Y.

Y. Chen, H. Zhan, and B. Zhou, Appl. Phys. Lett. 93, 222902 (2008).
[CrossRef]

Chen, Y. H.

Chiang, A. C.

Chung, T. Y.

Cordova-Plaza, A.

Digonnet, M. J. F.

Fan, T. Y.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Grisard, A.

Howard, A.

Huang, Y. C.

Ishizuki, H.

H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kung, A. H.

Lallier, E.

Lin, C. H.

Lin, S. T.

Lin, Y. Y.

Liu, H. C.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Pocholle, J.-P.

Rapaport, A.

Schlarb, U.

U. Schlarb and K. Betzler, Phys. Rev. B 50, 751 (1994).
[CrossRef]

Shaw, H. J.

Shoji, I.

H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
[CrossRef]

Taira, T.

H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
[CrossRef]

Xiao, G.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984), Chap. 9.

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984), Chap. 9.

Zhan, H.

Y. Chen, H. Zhan, and B. Zhou, Appl. Phys. Lett. 93, 222902 (2008).
[CrossRef]

Zhao, S.

Zhou, B.

Y. Chen, H. Zhan, and B. Zhou, Appl. Phys. Lett. 93, 222902 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic arrangement of the diode-pumped, internally Q-switched SOPO constructed using the 2D Nd:MgO:PPLN.

Fig. 2.
Fig. 2.

Measured output pulse energy and pulsewidth of the SOPO signal versus the diode pump power. The inset shows the measured oscilloscope trace of the signal.

Fig. 3.
Fig. 3.

(a) Calculated phase-matched signal (solid lines) and idler (dashed lines) wavelengths versus their emission angles with respect to the crystallographic x axis for a 1084.5 nm pump wave incident at θp=θB0.72° in the 2D Nd:MgO:PPLN for some lowest orders of Km,n; (b) measured output spectrum of the SOPO at 8.5 W diode power. The inset illustrates the QPM schemes that contribute to the measured spectral peaks.

Fig. 4.
Fig. 4.

Measured signal wavelength (squares) versus the Nd:MgO:PPLN temperature. The idler wavelengths (triangles) were calculated according to the energy conservation law. The solid line represents the theoretical fit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔTη%=λ0πLcosθBsin2θB[sinc1(0.1η/KL)]2(KL)2|neT|1,

Metrics