Abstract

We present a novel method for improving the spatial resolution and amplitude accuracy of distributed polarization cross-talk measurements in a polarization maintaining (PM) fiber against its birefringence dispersion. We show that the broadening of measured polarization cross-talk peaks caused by birefringence dispersion can be restored by simply multiplying the measurement data with a compensation function. The birefringence dispersion variable in the function can be obtained by finding the widths of measured cross-talk envelopes at known distances along the fiber. We demonstrate that this method can effectively improve spatial resolution and amplitude accuracy of the space-resolved polarization cross-talk measurements of long PM fibers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Saida and K. Hotate, IEEE Photon. Technol. Lett. 9, 484 (1997).
    [CrossRef]
  2. P. Martin, G. Le Boudec, and H. C. Lefevre, Proc. SPIE 1585, 173 (1991).
    [CrossRef]
  3. Z. Ding, Z. Meng, X. S. Yao, X. Chen, T. Liu, and M. Qin, Opt. Lett. 36, 2173 (2011).
    [CrossRef]
  4. Z. Ding, X. S. Yao, T. Liu, and G. Li, J. Optoelectron. Laser 21, 430 (2010).
    [CrossRef]
  5. K. Takada, J. Noda, and K. Okamoto, Opt. Lett. 11, 680 (1986).
    [CrossRef]
  6. N. Shibata, M. Tsubokawa, T. Nakashima, and S. Seikai, J. Opt. Soc. Am. A 4, 494 (1987).
    [CrossRef]
  7. N. Shibata, A. Nakazono, and Y. Inoue, J. Lightwave Technol. 23, 1244 (2005).
    [CrossRef]
  8. F. Tang, X. Wang, Y. Zhang, and W. Jing, Opt. Lett. 31, 3411 (2006).
    [CrossRef]
  9. F. Tang, X. Wang, Y. Zhang, and W. Jing, Appl. Opt. 46, 4073 (2007).
    [CrossRef]
  10. M. Shlyagin, A. Khomenko, and D. Tentori, Opt. Lett. 20, 869 (1995).
    [CrossRef]
  11. P. Hlubina and T. Martynkien, Opt. Express 11, 2793 (2003).
  12. P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. Alard, J. Lightwave Technol. 7, 500 (1989).
    [CrossRef]
  13. D. A. Flavin, R. McBride, and J. D. C. Jones, Opt. Lett. 27, 1010 (2002).
    [CrossRef]
  14. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, Opt. Express 9, 610 (2001).
    [CrossRef]

2011

2010

Z. Ding, X. S. Yao, T. Liu, and G. Li, J. Optoelectron. Laser 21, 430 (2010).
[CrossRef]

2007

2006

2005

2003

2002

2001

1997

T. Saida and K. Hotate, IEEE Photon. Technol. Lett. 9, 484 (1997).
[CrossRef]

1995

1991

P. Martin, G. Le Boudec, and H. C. Lefevre, Proc. SPIE 1585, 173 (1991).
[CrossRef]

1989

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

1987

1986

Alard, F.

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Chen, X.

Ding, Z.

Z. Ding, Z. Meng, X. S. Yao, X. Chen, T. Liu, and M. Qin, Opt. Lett. 36, 2173 (2011).
[CrossRef]

Z. Ding, X. S. Yao, T. Liu, and G. Li, J. Optoelectron. Laser 21, 430 (2010).
[CrossRef]

Durteste, Y.

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Fercher, A. F.

Flavin, D. A.

Francois, P. L.

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Hitzenberger, C. K.

Hlubina, P.

Hotate, K.

T. Saida and K. Hotate, IEEE Photon. Technol. Lett. 9, 484 (1997).
[CrossRef]

Inoue, Y.

Jing, W.

Jones, J. D. C.

Karamata, B.

Khomenko, A.

Lasser, T.

Le Boudec, G.

P. Martin, G. Le Boudec, and H. C. Lefevre, Proc. SPIE 1585, 173 (1991).
[CrossRef]

Lefevre, H. C.

P. Martin, G. Le Boudec, and H. C. Lefevre, Proc. SPIE 1585, 173 (1991).
[CrossRef]

Li, G.

Z. Ding, X. S. Yao, T. Liu, and G. Li, J. Optoelectron. Laser 21, 430 (2010).
[CrossRef]

Liu, T.

Z. Ding, Z. Meng, X. S. Yao, X. Chen, T. Liu, and M. Qin, Opt. Lett. 36, 2173 (2011).
[CrossRef]

Z. Ding, X. S. Yao, T. Liu, and G. Li, J. Optoelectron. Laser 21, 430 (2010).
[CrossRef]

Martin, P.

P. Martin, G. Le Boudec, and H. C. Lefevre, Proc. SPIE 1585, 173 (1991).
[CrossRef]

Martynkien, T.

McBride, R.

Meng, Z.

Monerie, M.

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Nakashima, T.

Nakazono, A.

Noda, J.

Okamoto, K.

Qin, M.

Saida, T.

T. Saida and K. Hotate, IEEE Photon. Technol. Lett. 9, 484 (1997).
[CrossRef]

Seikai, S.

Shibata, N.

Shlyagin, M.

Sticker, M.

Takada, K.

Tang, F.

Tentori, D.

Tsubokawa, M.

Vassallo, C.

P. L. Francois, M. Monerie, C. Vassallo, Y. Durteste, and F. Alard, J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Wang, X.

Yao, X. S.

Z. Ding, Z. Meng, X. S. Yao, X. Chen, T. Liu, and M. Qin, Opt. Lett. 36, 2173 (2011).
[CrossRef]

Z. Ding, X. S. Yao, T. Liu, and G. Li, J. Optoelectron. Laser 21, 430 (2010).
[CrossRef]

Zawadzki, R.

Zhang, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Illustration of a distributed polarization cross-talk analyzer based on a scanning white light Michelson interferometer. The inset shows the delay relation between the original and the cross talk components. Light with a short coherence length travelling in the fiber is polarized along its slow axis at input point A. Crosstalk is induced by a stress at point B where a small portion of light is coupled into fiber’s fast axis. The relative delay at output point C between the two polarization components is ΔZ. The location Zof cross-talk point B can be obtained from a measurement of ΔZ. FRM, PD, and DAQ are Faraday rotation mirror, photodetector, and data acquisition card, respectively.

Fig. 2.
Fig. 2.

Polarization cross-talk curve of a PM fiber coil. The insets show the zoom-in view of both the amplitude and width of cross-talk envelopes at output and input connectors, as well as in the middle region of the fiber, where two irresolvable peaks before dispersion compensation (solid line) can be clearly resolved after dispersion compensation (dotted line). The 9/125μm PANDA fiber under test has a birefringence of Δn=6.1×104 and the cross-talk measurement curve has dispersion-free spatial resolution of 5.4 cm. Note that our system has a noise floor of 76dB, so that the noise has negligible effect on the measurements of cross-talk peaks larger than 66dB.

Fig. 3.
Fig. 3.

(a) Envelope widths of cross-talk peaks induced by stress at various locations along the fiber; (b) measured cross-talk amplitude of the input connector with six different fiber lengths (5 m, 205 m, 405 m, 605 m, 805 m, and 1005 m). The crosstalk of the input connector is fixed; however, five segments of fibers with a length of 200 m each are sequentially spliced to the pigtail of the input connector for increased dispersion. The amplitude of polarization cross-talk decreases with the fiber length Z due to birefringence dispersion ΔD and is restored after performing the compensation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

|γ(Z,ΔD)|=hh2(1+ρ2)1/4exp{[2δd(1+ρ2)1/2W0]2},
δd=(ΔnZd),
ρ=2πc(Δλ/λ0)2ΔDZ=αΔDZ,
ΔD=dτ/dλ=[ω2/2πc](d2Δβ/dω2)0.
K(ρ)=1+ρ24exp{[2δdρ(1+ρ2)1/2W0]2}.
γ(Z,ΔD)·K(ρ)=hh2exp[(2δdW0)2].
W/W0=(1+ρ2)1/2=(1+(αΔD)2Z2)1/2.

Metrics