Abstract

Photothermal deflection spectroscopy is combined with a Sagnac interferometer to enhance the sensitivity of the absorption measurement by converting the photothermal beam deflection effect into the light intensity change by the interference effect. Because of stable light interference due to the common path, the signal intensity can be amplified without increasing the noise by extending the optical path length between a sample and a photodetector. The sensitivity is further improved by the use of focusing optics and double-pass geometry. This makes photothermal deflection spectroscopy applicable to any kind of material in the whole visible region with a xenon lamp for excitation and water or air as a deflection medium.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
    [CrossRef]
  2. A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).
    [CrossRef]
  3. T. Kitamori and T. Sawada, Specrochim. Acta Rev. 14, 275 (1991).
  4. A. Harata, Q. Shen, and T. Sawada, Annu. Rev. Phys. Chem. 50, 193 (1999).
    [CrossRef]
  5. Y. Nosaka and E. Tokunaga, Appl. Opt. 46, 4289 (2007).
    [CrossRef]
  6. Y. Nosaka and E. Tokunaga, Appl. Opt. 46, 7267 (2007).
    [CrossRef]
  7. S. Berciaud, L. Cognet, and B. Lounis, Nano Lett. 5, 2160 (2005).
    [CrossRef]
  8. K. Tanaka, T. Gotoh, N. Yoshida, and S. Nonomura, J. Appl. Phys. 91, 125 (2002).
    [CrossRef]
  9. P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys. Rev. Lett. 102, 173601 (2009).
    [CrossRef]
  10. J. M. Hogan, J. Hammer, S.-W. Chiow, S. Dickerson, D. M. S. Johnson, T. Kovachy, A. Sugarbaker, and M. A. Kasevich, Opt. Lett. 36, 1698 (2011).
    [CrossRef]
  11. H. Kano, K. Misawa, and T. Kobayashi, Opt. Commun. 188, 1 (2001).
    [CrossRef]
  12. J. Hwang, M. M. Fejer, and W. E. Moerner, Phys. Rev. A 73, 021802(R) (2006).
    [CrossRef]
  13. S. Yukita, N. Shiokawa, H. Kanemaru, H. Namiki, T. Kobayashi, and E. Tokunaga, Appl. Phys. Lett. 100, 171108 (2012).
    [CrossRef]
  14. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
    [CrossRef]

2012 (1)

S. Yukita, N. Shiokawa, H. Kanemaru, H. Namiki, T. Kobayashi, and E. Tokunaga, Appl. Phys. Lett. 100, 171108 (2012).
[CrossRef]

2011 (1)

2010 (1)

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

2009 (1)

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys. Rev. Lett. 102, 173601 (2009).
[CrossRef]

2007 (2)

2006 (1)

J. Hwang, M. M. Fejer, and W. E. Moerner, Phys. Rev. A 73, 021802(R) (2006).
[CrossRef]

2005 (1)

S. Berciaud, L. Cognet, and B. Lounis, Nano Lett. 5, 2160 (2005).
[CrossRef]

2002 (1)

K. Tanaka, T. Gotoh, N. Yoshida, and S. Nonomura, J. Appl. Phys. 91, 125 (2002).
[CrossRef]

2001 (1)

H. Kano, K. Misawa, and T. Kobayashi, Opt. Commun. 188, 1 (2001).
[CrossRef]

1999 (1)

A. Harata, Q. Shen, and T. Sawada, Annu. Rev. Phys. Chem. 50, 193 (1999).
[CrossRef]

1991 (1)

T. Kitamori and T. Sawada, Specrochim. Acta Rev. 14, 275 (1991).

1986 (1)

A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).
[CrossRef]

1980 (1)

A. C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

Badoz, J.

A. C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

Berciaud, S.

S. Berciaud, L. Cognet, and B. Lounis, Nano Lett. 5, 2160 (2005).
[CrossRef]

Boccara, A. C.

A. C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

Cao, J.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Chiow, S.-W.

Cognet, L.

S. Berciaud, L. Cognet, and B. Lounis, Nano Lett. 5, 2160 (2005).
[CrossRef]

Dickerson, S.

Dixon, P. B.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys. Rev. Lett. 102, 173601 (2009).
[CrossRef]

Fejer, M. M.

J. Hwang, M. M. Fejer, and W. E. Moerner, Phys. Rev. A 73, 021802(R) (2006).
[CrossRef]

Fournier, D.

A. C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

Gotoh, T.

K. Tanaka, T. Gotoh, N. Yoshida, and S. Nonomura, J. Appl. Phys. 91, 125 (2002).
[CrossRef]

Hammer, J.

Harata, A.

A. Harata, Q. Shen, and T. Sawada, Annu. Rev. Phys. Chem. 50, 193 (1999).
[CrossRef]

Hogan, J. M.

Howell, J. C.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys. Rev. Lett. 102, 173601 (2009).
[CrossRef]

Hwang, J.

J. Hwang, M. M. Fejer, and W. E. Moerner, Phys. Rev. A 73, 021802(R) (2006).
[CrossRef]

Johnson, D. M. S.

Jordan, A. N.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys. Rev. Lett. 102, 173601 (2009).
[CrossRef]

Kako, T.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Kanemaru, H.

S. Yukita, N. Shiokawa, H. Kanemaru, H. Namiki, T. Kobayashi, and E. Tokunaga, Appl. Phys. Lett. 100, 171108 (2012).
[CrossRef]

Kano, H.

H. Kano, K. Misawa, and T. Kobayashi, Opt. Commun. 188, 1 (2001).
[CrossRef]

Kasevich, M. A.

Kikugawa, N.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Kitamori, T.

T. Kitamori and T. Sawada, Specrochim. Acta Rev. 14, 275 (1991).

Kobayashi, T.

S. Yukita, N. Shiokawa, H. Kanemaru, H. Namiki, T. Kobayashi, and E. Tokunaga, Appl. Phys. Lett. 100, 171108 (2012).
[CrossRef]

H. Kano, K. Misawa, and T. Kobayashi, Opt. Commun. 188, 1 (2001).
[CrossRef]

Kovachy, T.

Li, Z.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Liu, Y.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Lounis, B.

S. Berciaud, L. Cognet, and B. Lounis, Nano Lett. 5, 2160 (2005).
[CrossRef]

Luo, W.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Misawa, K.

H. Kano, K. Misawa, and T. Kobayashi, Opt. Commun. 188, 1 (2001).
[CrossRef]

Moerner, W. E.

J. Hwang, M. M. Fejer, and W. E. Moerner, Phys. Rev. A 73, 021802(R) (2006).
[CrossRef]

Namiki, H.

S. Yukita, N. Shiokawa, H. Kanemaru, H. Namiki, T. Kobayashi, and E. Tokunaga, Appl. Phys. Lett. 100, 171108 (2012).
[CrossRef]

Nonomura, S.

K. Tanaka, T. Gotoh, N. Yoshida, and S. Nonomura, J. Appl. Phys. 91, 125 (2002).
[CrossRef]

Nosaka, Y.

Ouyang, S.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Sawada, T.

A. Harata, Q. Shen, and T. Sawada, Annu. Rev. Phys. Chem. 50, 193 (1999).
[CrossRef]

T. Kitamori and T. Sawada, Specrochim. Acta Rev. 14, 275 (1991).

Shen, Q.

A. Harata, Q. Shen, and T. Sawada, Annu. Rev. Phys. Chem. 50, 193 (1999).
[CrossRef]

Shiokawa, N.

S. Yukita, N. Shiokawa, H. Kanemaru, H. Namiki, T. Kobayashi, and E. Tokunaga, Appl. Phys. Lett. 100, 171108 (2012).
[CrossRef]

Starling, D. J.

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys. Rev. Lett. 102, 173601 (2009).
[CrossRef]

Stuart-Williams, H.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Sugarbaker, A.

Tam, A. C.

A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).
[CrossRef]

Tanaka, K.

K. Tanaka, T. Gotoh, N. Yoshida, and S. Nonomura, J. Appl. Phys. 91, 125 (2002).
[CrossRef]

Tokunaga, E.

S. Yukita, N. Shiokawa, H. Kanemaru, H. Namiki, T. Kobayashi, and E. Tokunaga, Appl. Phys. Lett. 100, 171108 (2012).
[CrossRef]

Y. Nosaka and E. Tokunaga, Appl. Opt. 46, 7267 (2007).
[CrossRef]

Y. Nosaka and E. Tokunaga, Appl. Opt. 46, 4289 (2007).
[CrossRef]

Withers, R. L.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Yang, H.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Ye, J.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Yi, Z.

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Yoshida, N.

K. Tanaka, T. Gotoh, N. Yoshida, and S. Nonomura, J. Appl. Phys. 91, 125 (2002).
[CrossRef]

Yukita, S.

S. Yukita, N. Shiokawa, H. Kanemaru, H. Namiki, T. Kobayashi, and E. Tokunaga, Appl. Phys. Lett. 100, 171108 (2012).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

A. Harata, Q. Shen, and T. Sawada, Annu. Rev. Phys. Chem. 50, 193 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. Yukita, N. Shiokawa, H. Kanemaru, H. Namiki, T. Kobayashi, and E. Tokunaga, Appl. Phys. Lett. 100, 171108 (2012).
[CrossRef]

A. C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

J. Appl. Phys. (1)

K. Tanaka, T. Gotoh, N. Yoshida, and S. Nonomura, J. Appl. Phys. 91, 125 (2002).
[CrossRef]

Nano Lett. (1)

S. Berciaud, L. Cognet, and B. Lounis, Nano Lett. 5, 2160 (2005).
[CrossRef]

Nat. Mater. (1)

Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater. 9, 559 (2010).
[CrossRef]

Opt. Commun. (1)

H. Kano, K. Misawa, and T. Kobayashi, Opt. Commun. 188, 1 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

J. Hwang, M. M. Fejer, and W. E. Moerner, Phys. Rev. A 73, 021802(R) (2006).
[CrossRef]

Phys. Rev. Lett. (1)

P. B. Dixon, D. J. Starling, A. N. Jordan, and J. C. Howell, Phys. Rev. Lett. 102, 173601 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).
[CrossRef]

Specrochim. Acta Rev. (1)

T. Kitamori and T. Sawada, Specrochim. Acta Rev. 14, 275 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for a Sagnac interferometer for photothermal deflection spectroscopy (SPDS). P, polarizer; λ/2, half wave plate; BS, beam splitter; PD, photodiode; F50, lens with 50 mm focal length.

Fig. 2.
Fig. 2.

Imbalance in the lateral shift of the beams on the detector surface between the two (CW and CCW) arms of the interferometer.

Fig. 3.
Fig. 3.

(a) Solid curve I(x): calculated intensity I of the interfered two probe beams as a function of the distance x (the lateral shift) between the central positions of the two beams. Dashed curve ΔI(x): intensity change, which is proportional to the first derivative of I(x). (b) Amplified displacement signal calculated with the weak measurement protocol. See the text for details.

Fig. 4.
Fig. 4.

The arm length dependence of SPDS spectra (not normalized with the pump light spectrum) of ZnSe immersed in CCl4 detected at f=44Hz without focusing the probe light at the sample. The arm length is defined by the path length (from the sample to the photodiode) difference between the CW and CCW paths.

Fig. 5.
Fig. 5.

(a) Comparison between PDS and SPDS spectra for ZnSe with water as deflection medium; (b) SPDS spectrum for Ag3PO4 powder with air as deflection medium, normalized with the lamp spectrum. The probe was focused with an F=1000mm lens and double beam-pass geometry was employed. The photothermal spectrum of charcoal was used as the lamp spectrum for normalization. Around 575 nm, a structure originating from the spectral response in the monochromator is not completely compensated for by normalization.

Tables (1)

Tables Icon

Table 1. TDL and dn/dT for Typical Deflection Media

Metrics