Abstract

We theoretically demonstrate that microscopic heterogeneous properties can enhance the transmission bandwidths of graded-index plastic optical fibers (POFs) for short-haul communication networks. The heterogeneities of the POF cores are quantitatively correlated with mode couplings by modifying the coupled power equation with consideration of the spatial correlation characteristics of the heterogeneities. Using the modified theory, we clarify that the larger fluctuation size and/or amplitude results in higher bandwidth because of greater forward scattering and/or higher scattering efficiency, respectively. This suggests that the multimode fiber bandwidths can depend on the macroscopically observed index profiles as well as on the microscopic material properties.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Koike and M. Asai, NPG Asia Mater. 1, 22 (2009).
    [CrossRef]
  2. A. Polley, R. J. Gandhi, and S. E. Ralph, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC2007), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OMR5.
  3. S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, in Proceedings of the 34th European Conference and Exhibition on Optical Communication (ECOC2008) (2008), paper We.2.A.4.
  4. W. R. White, M. Dueser, W. A. Reed, and T. Onishi, IEEE Photon. Technol. Lett. 11, 997 (1999).
    [CrossRef]
  5. A. Polley and S. E. Ralph, IEEE Photon. Technol. Lett. 19, 1254 (2007).
    [CrossRef]
  6. M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).
  7. R. Olshansky, Rev. Mod. Phys. 51, 341 (1979).
    [CrossRef]
  8. Y. Koike, N. Tanio, and Y. Ohtsuka, Macromolecules 22, 1367 (1989).
    [CrossRef]
  9. Y. Koike, S. Matsuoka, and H. E. Bair, Macromolecules 25, 4807 (1992).
    [CrossRef]
  10. P. Debye and A. M. Bueche, J. Appl. Phys. 20, 518 (1949).
    [CrossRef]
  11. D. Marcuse, Theory of Dielectric Optical Waveguide(Academic, 1974).
  12. N. P. Puente, E. I. Chaikina, S. Herath, and A. Yamilov, Appl. Opt. 50, 802 (2011).
    [CrossRef]
  13. P. Dubský, Opt. Quantum Electron. 21, 511 (1989).
    [CrossRef]

2011

2009

Y. Koike and M. Asai, NPG Asia Mater. 1, 22 (2009).
[CrossRef]

2007

A. Polley and S. E. Ralph, IEEE Photon. Technol. Lett. 19, 1254 (2007).
[CrossRef]

1999

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, IEEE Photon. Technol. Lett. 11, 997 (1999).
[CrossRef]

1992

Y. Koike, S. Matsuoka, and H. E. Bair, Macromolecules 25, 4807 (1992).
[CrossRef]

1989

P. Dubský, Opt. Quantum Electron. 21, 511 (1989).
[CrossRef]

Y. Koike, N. Tanio, and Y. Ohtsuka, Macromolecules 22, 1367 (1989).
[CrossRef]

1979

R. Olshansky, Rev. Mod. Phys. 51, 341 (1979).
[CrossRef]

1949

P. Debye and A. M. Bueche, J. Appl. Phys. 20, 518 (1949).
[CrossRef]

Asai, M.

Y. Koike and M. Asai, NPG Asia Mater. 1, 22 (2009).
[CrossRef]

Bair, H. E.

Y. Koike, S. Matsuoka, and H. E. Bair, Macromolecules 25, 4807 (1992).
[CrossRef]

Barton, G. W.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).

Bueche, A. M.

P. Debye and A. M. Bueche, J. Appl. Phys. 20, 518 (1949).
[CrossRef]

Chaikina, E. I.

Christen, L.

S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, in Proceedings of the 34th European Conference and Exhibition on Optical Communication (ECOC2008) (2008), paper We.2.A.4.

Debye, P.

P. Debye and A. M. Bueche, J. Appl. Phys. 20, 518 (1949).
[CrossRef]

Dubský, P.

P. Dubský, Opt. Quantum Electron. 21, 511 (1989).
[CrossRef]

Dueser, M.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, IEEE Photon. Technol. Lett. 11, 997 (1999).
[CrossRef]

Gandhi, R. J.

A. Polley, R. J. Gandhi, and S. E. Ralph, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC2007), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OMR5.

Herath, S.

Khaleghi, S.

S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, in Proceedings of the 34th European Conference and Exhibition on Optical Communication (ECOC2008) (2008), paper We.2.A.4.

Koike, Y.

Y. Koike and M. Asai, NPG Asia Mater. 1, 22 (2009).
[CrossRef]

Y. Koike, S. Matsuoka, and H. E. Bair, Macromolecules 25, 4807 (1992).
[CrossRef]

Y. Koike, N. Tanio, and Y. Ohtsuka, Macromolecules 22, 1367 (1989).
[CrossRef]

S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, in Proceedings of the 34th European Conference and Exhibition on Optical Communication (ECOC2008) (2008), paper We.2.A.4.

Large, M. C. J.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguide(Academic, 1974).

Matsuoka, S.

Y. Koike, S. Matsuoka, and H. E. Bair, Macromolecules 25, 4807 (1992).
[CrossRef]

Nuccio, S. R.

S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, in Proceedings of the 34th European Conference and Exhibition on Optical Communication (ECOC2008) (2008), paper We.2.A.4.

Ohtsuka, Y.

Y. Koike, N. Tanio, and Y. Ohtsuka, Macromolecules 22, 1367 (1989).
[CrossRef]

Olshansky, R.

R. Olshansky, Rev. Mod. Phys. 51, 341 (1979).
[CrossRef]

Onishi, T.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, IEEE Photon. Technol. Lett. 11, 997 (1999).
[CrossRef]

Poladian, L.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).

Polley, A.

A. Polley and S. E. Ralph, IEEE Photon. Technol. Lett. 19, 1254 (2007).
[CrossRef]

A. Polley, R. J. Gandhi, and S. E. Ralph, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC2007), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OMR5.

Puente, N. P.

Ralph, S. E.

A. Polley and S. E. Ralph, IEEE Photon. Technol. Lett. 19, 1254 (2007).
[CrossRef]

A. Polley, R. J. Gandhi, and S. E. Ralph, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC2007), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OMR5.

Reed, W. A.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, IEEE Photon. Technol. Lett. 11, 997 (1999).
[CrossRef]

Tanio, N.

Y. Koike, N. Tanio, and Y. Ohtsuka, Macromolecules 22, 1367 (1989).
[CrossRef]

van Eijkelenborg, M. A.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).

White, W. R.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, IEEE Photon. Technol. Lett. 11, 997 (1999).
[CrossRef]

Willner, A. E.

S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, in Proceedings of the 34th European Conference and Exhibition on Optical Communication (ECOC2008) (2008), paper We.2.A.4.

Wu, X.

S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, in Proceedings of the 34th European Conference and Exhibition on Optical Communication (ECOC2008) (2008), paper We.2.A.4.

Yamilov, A.

Yilmaz, O.

S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, in Proceedings of the 34th European Conference and Exhibition on Optical Communication (ECOC2008) (2008), paper We.2.A.4.

Appl. Opt.

IEEE Photon. Technol. Lett.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, IEEE Photon. Technol. Lett. 11, 997 (1999).
[CrossRef]

A. Polley and S. E. Ralph, IEEE Photon. Technol. Lett. 19, 1254 (2007).
[CrossRef]

J. Appl. Phys.

P. Debye and A. M. Bueche, J. Appl. Phys. 20, 518 (1949).
[CrossRef]

Macromolecules

Y. Koike, N. Tanio, and Y. Ohtsuka, Macromolecules 22, 1367 (1989).
[CrossRef]

Y. Koike, S. Matsuoka, and H. E. Bair, Macromolecules 25, 4807 (1992).
[CrossRef]

NPG Asia Mater.

Y. Koike and M. Asai, NPG Asia Mater. 1, 22 (2009).
[CrossRef]

Opt. Quantum Electron.

P. Dubský, Opt. Quantum Electron. 21, 511 (1989).
[CrossRef]

Rev. Mod. Phys.

R. Olshansky, Rev. Mod. Phys. 51, 341 (1979).
[CrossRef]

Other

A. Polley, R. J. Gandhi, and S. E. Ralph, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC2007), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OMR5.

S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, in Proceedings of the 34th European Conference and Exhibition on Optical Communication (ECOC2008) (2008), paper We.2.A.4.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).

D. Marcuse, Theory of Dielectric Optical Waveguide(Academic, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of (a) mode coupling due to microscopic heterogeneous structures and (b) ideal GI POF with the radial power law profile given by n(ρ)=n1[12Δ(ρ/a)g]1/2, where a=25μm, g=2.5, n1=1.506, n2=1.492, and Δ=(n12n22)/2n12 [1].

Fig. 2.
Fig. 2.

Coefficient Cμν as a function of correlation length D for several |Δβ| values. The insets schematically show scattering vectors (black solid arrows) with propagation vectors of scattered (gray solid arrows) and incident (gray dotted arrows) light along the z-axis.

Fig. 3.
Fig. 3.

Power coupling coefficient as a function of the |Eμt·Eνt|2dxdy value. Inset shows the transverse electric fields of the LP modes, whose pairs have the minimum and maximum field-intensity overlaps.

Fig. 4.
Fig. 4.

3dB bandwidth of the 200 m GI POF as a function of correlation length for several δεr2 values.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δε(r)δε(r)=δε2exp(|rr|2D2),
Pμz+τμPμt=αμPμ+ν=1Nhμν(PνPμ),
hμν=Kμν(z)Kμν*(z+ζ)exp[iΔβζ]dζ.
hμν=Cμν|Eμt*·Eνt|2dxdy,
Cμν=δε2ω2π3/2D38P2exp(Δβ2D24).

Metrics