Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Model-independent dynamic constraint to improve the optical reconstruction of regional kinetic parameters

Not Accessible

Your library or personal account may give you access

Abstract

Optical dye-dilution techniques can quantify kinetic parameters in a region of tissue, but currently rely on a two-step process—spatial reconstruction of the dye concentration, repeated at every time-point, and subsequent kinetic analysis of the time-dependent change in dye concentration. Inaccuracies, in this approach, are due mainly to the ill-posed nature of the spatial reconstruction problem, which propagates into kinetic analysis and result in errors in extracted dynamic parameters. We present a hybrid kinetic deconvolution optical reconstruction algorithm, effectively combining optical reconstruction and model-independent kinetic analysis into a single inverse problem that is better posed. Kinetic parameters of multiple tissue regions can be quantified simultaneously. As proof of principle, we provide numerical experiments in reflectance-based and fluorescence molecular tomography scenarios.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Estimation of kinetic model parameters in fluorescence optical diffusion tomography

Adam B. Milstein, Kevin J. Webb, and Charles A. Bouman
J. Opt. Soc. Am. A 22(7) 1357-1368 (2005)

Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography

Huangjian Yi, Duofang Chen, Xiaochao Qu, Kuan Peng, Xueli Chen, Yuanyuan Zhou, Jie Tian, and Jimin Liang
Appl. Opt. 51(7) 975-986 (2012)

Model-resolution based regularization improves near infrared diffuse optical tomography

Sree Harsha Katamreddy and Phaneendra K. Yalavarthy
J. Opt. Soc. Am. A 29(5) 649-656 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved