Abstract

We present a photon noise and diffraction-limited imaging method combining an imaging laser and ultrasonic waves. The laser optical feedback imaging (LOFI) technique is an ultrasensitive imaging method for imaging objects through or embedded within a scattering medium. However, LOFI performances are dramatically limited by parasitic optical feedback occurring in the experimental setup. In this Letter, we have tagged the ballistic photons by an acousto-optic effect in order to filter the parasitic feedback effect and to reach the theoretical and ultimate sensitivity of the LOFI technique. We present the principle and the experimental setup of the acousto-optic laser optical feedback imaging technique, and we demonstrate the suppression of the parasitic feedback.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, A. Knüttel, and M. Yadlowsky, J. Opt. Soc. Am. A 11, 2226 (1994).
    [CrossRef]
  2. C. Dunsby and P. M. W. French, J. Phys. D 36, R207 (2003).
    [CrossRef]
  3. J. M. Schmitt and A. Knüttel, J. Opt. Soc. Am. A 14, 1231 (1997).
    [CrossRef]
  4. M. Lesaffre, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, Opt. Express 17, 18211 (2009).
    [CrossRef]
  5. K. Otsuka, IEEE J. Quantum Electron. 15, 655 (1979).
    [CrossRef]
  6. E. Lacot, R. Day, and F. Stoeckel, Phys. Rev. A 64, 043815 (2001).
    [CrossRef]
  7. O. Jacquin, E. Lacot, W. Glastre, O. Hugon, and H. Guillet de Chatellus, J. Opt. Soc. Am. A 28, 1741 (2011).
    [CrossRef]
  8. O. Jacquin, S. Heidmann, E. Lacot, and O. Hugon, Appl. Opt. 48, 64 (2009).
    [CrossRef]
  9. W. Glastre, E. Lacot, O. Jacquin, O. Hugon, and H. Guillet de Chatellus, J. Opt. Soc. Am. A 29, 476 (2012).
    [CrossRef]

2012 (1)

2011 (1)

2009 (2)

2003 (1)

C. Dunsby and P. M. W. French, J. Phys. D 36, R207 (2003).
[CrossRef]

2001 (1)

E. Lacot, R. Day, and F. Stoeckel, Phys. Rev. A 64, 043815 (2001).
[CrossRef]

1997 (1)

1994 (1)

1979 (1)

K. Otsuka, IEEE J. Quantum Electron. 15, 655 (1979).
[CrossRef]

Boccara, C.

Day, R.

E. Lacot, R. Day, and F. Stoeckel, Phys. Rev. A 64, 043815 (2001).
[CrossRef]

Delaye, P.

Dunsby, C.

C. Dunsby and P. M. W. French, J. Phys. D 36, R207 (2003).
[CrossRef]

French, P. M. W.

C. Dunsby and P. M. W. French, J. Phys. D 36, R207 (2003).
[CrossRef]

Glastre, W.

Gross, M.

Guillet de Chatellus, H.

Heidmann, S.

Hugon, O.

Jacquin, O.

Knüttel, A.

Lacot, E.

Lesaffre, M.

Otsuka, K.

K. Otsuka, IEEE J. Quantum Electron. 15, 655 (1979).
[CrossRef]

Ramaz, F.

Schmitt, J. M.

Stoeckel, F.

E. Lacot, R. Day, and F. Stoeckel, Phys. Rev. A 64, 043815 (2001).
[CrossRef]

Yadlowsky, M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of LOFI setup with acoustic tagging (AO-LOFI). PD, photodiode; BS, beam splitter.

Fig. 2.
Fig. 2.

Images of the target in a scattering medium: (a) with the LOFI setup at the FA reference frequency, FA=3MHz and (b) with the AO-LOFI setup at the FAFS frequency, FA=7.5MH and FS=4.5MHz. The left (resp. right) rectangle represents the area where the signal (resp. noise) is measured. Both rectangles represent 625 pixels.

Fig. 3.
Fig. 3.

SNR versus parameter Kopt, in LOFI and AO-LOFI images.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SNR=rt2+rP2+2rtrPcos(2πλ2(dPdt)).Kopt.pout2ΔFRbspout+rPKopt.pout,
SNR=RbsrtκUS.γUS2ΔFPout,

Metrics