Abstract

Internal stress in material detracts from its usefulness. In this Letter, a stress measurement instrument is reported. The instrument principle is based on a laser feedback effect where the polarization state of the laser with an anisotropic feedback cavity will flip between two orthogonal directions, while the feedback mirror is tuned by piezoelectric transducer sawtooth voltage. The position of polarization flipping in one period on curves reflects the birefringence or material internal stress of the feedback cavity. Hence, when a piece of internal stress material is placed in a feedback cavity, its internal stress can be measured by the polarization flipping position. The internal stress of the vacuum tube, Nd:YAG crystal, and GaN semiconductor are measured, which proved this instrument has very high precision.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Tebedge, G. A. Alpsten, and L. Tall, “Measurement of residual stress: a study of methods,” Rep. 337.8 (Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University, 1971).
  2. N. Kalakoutsky, The Study of Residual Stresses in Cast Iron and Steel (1888).
  3. A. W. Huber and L. S. Beedle, Weld. J. 33, 589 (1954).
  4. J. Mathar, in Transactions ASME (ASME, 1934), p. 249.
  5. L. A. Glikman, Zavodskaya Laboratoria 5, 63 (1936).
  6. H. H. Lester and R. H. Aborn, Army Ordnance 6, 120 (1925).
  7. R. L. Gause, “Nondestructive testing: trends and techniques” NASA SP-5082 (NASA, 1967).
  8. H. T. Jessop, Br. J. Appl. Phys. 4, 138 (1953).
    [CrossRef]
  9. P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).
  10. G. Stephan, A. D. May, R. E. Mueller, and B. Aissaoui, J. Opt. Soc. Am. B 4, 1276 (1987).
    [CrossRef]
  11. H. Li, A. Hohl, A Gavrielides, H. Hou, and K. D. Choquette, Appl. Phys. Lett. 72, 2355 (1998).
    [CrossRef]
  12. J. Brannon, Appl. Opt. 15, 1119 (1976).
    [CrossRef]
  13. S. Donati and G. Giuliani, IEEE J. Quantum Electron. 31, 113 (1995).
    [CrossRef]
  14. S. Koboyashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. 18, 582 (1982).
    [CrossRef]
  15. P. A. Roos, M. Stephens, and C. Wiemen, Appl. Opt. 35, 6754 (1996).
    [CrossRef]
  16. J. Terrien, Metrologia 1, 80 (1965).
    [CrossRef]
  17. E. Lamb, Phys. Rev. 134, A1429 (1964).
    [CrossRef]

1998 (1)

H. Li, A. Hohl, A Gavrielides, H. Hou, and K. D. Choquette, Appl. Phys. Lett. 72, 2355 (1998).
[CrossRef]

1996 (1)

1995 (1)

S. Donati and G. Giuliani, IEEE J. Quantum Electron. 31, 113 (1995).
[CrossRef]

1987 (1)

1982 (1)

S. Koboyashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. 18, 582 (1982).
[CrossRef]

1976 (1)

1965 (1)

J. Terrien, Metrologia 1, 80 (1965).
[CrossRef]

1964 (1)

E. Lamb, Phys. Rev. 134, A1429 (1964).
[CrossRef]

1963 (1)

P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).

1954 (1)

A. W. Huber and L. S. Beedle, Weld. J. 33, 589 (1954).

1953 (1)

H. T. Jessop, Br. J. Appl. Phys. 4, 138 (1953).
[CrossRef]

1936 (1)

L. A. Glikman, Zavodskaya Laboratoria 5, 63 (1936).

1925 (1)

H. H. Lester and R. H. Aborn, Army Ordnance 6, 120 (1925).

Aborn, R. H.

H. H. Lester and R. H. Aborn, Army Ordnance 6, 120 (1925).

Aissaoui, B.

Alpsten, G. A.

N. Tebedge, G. A. Alpsten, and L. Tall, “Measurement of residual stress: a study of methods,” Rep. 337.8 (Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University, 1971).

Beedle, L. S.

A. W. Huber and L. S. Beedle, Weld. J. 33, 589 (1954).

Brannon, J.

Choquette, K. D.

H. Li, A. Hohl, A Gavrielides, H. Hou, and K. D. Choquette, Appl. Phys. Lett. 72, 2355 (1998).
[CrossRef]

Donati, S.

S. Donati and G. Giuliani, IEEE J. Quantum Electron. 31, 113 (1995).
[CrossRef]

Gause, R. L.

R. L. Gause, “Nondestructive testing: trends and techniques” NASA SP-5082 (NASA, 1967).

Gavrielides, A

H. Li, A. Hohl, A Gavrielides, H. Hou, and K. D. Choquette, Appl. Phys. Lett. 72, 2355 (1998).
[CrossRef]

Giuliani, G.

S. Donati and G. Giuliani, IEEE J. Quantum Electron. 31, 113 (1995).
[CrossRef]

Glikman, L. A.

L. A. Glikman, Zavodskaya Laboratoria 5, 63 (1936).

Hohl, A.

H. Li, A. Hohl, A Gavrielides, H. Hou, and K. D. Choquette, Appl. Phys. Lett. 72, 2355 (1998).
[CrossRef]

Hou, H.

H. Li, A. Hohl, A Gavrielides, H. Hou, and K. D. Choquette, Appl. Phys. Lett. 72, 2355 (1998).
[CrossRef]

Huber, A. W.

A. W. Huber and L. S. Beedle, Weld. J. 33, 589 (1954).

Ito, M.

S. Koboyashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. 18, 582 (1982).
[CrossRef]

Jessop, H. T.

H. T. Jessop, Br. J. Appl. Phys. 4, 138 (1953).
[CrossRef]

Kalakoutsky, N.

N. Kalakoutsky, The Study of Residual Stresses in Cast Iron and Steel (1888).

Kimura, T.

S. Koboyashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. 18, 582 (1982).
[CrossRef]

King, P. G. R.

P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).

Koboyashi, S.

S. Koboyashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. 18, 582 (1982).
[CrossRef]

Lamb, E.

E. Lamb, Phys. Rev. 134, A1429 (1964).
[CrossRef]

Lester, H. H.

H. H. Lester and R. H. Aborn, Army Ordnance 6, 120 (1925).

Li, H.

H. Li, A. Hohl, A Gavrielides, H. Hou, and K. D. Choquette, Appl. Phys. Lett. 72, 2355 (1998).
[CrossRef]

Mathar, J.

J. Mathar, in Transactions ASME (ASME, 1934), p. 249.

May, A. D.

Mueller, R. E.

Roos, P. A.

Stephan, G.

Stephens, M.

Steward, G. J.

P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).

Tall, L.

N. Tebedge, G. A. Alpsten, and L. Tall, “Measurement of residual stress: a study of methods,” Rep. 337.8 (Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University, 1971).

Tebedge, N.

N. Tebedge, G. A. Alpsten, and L. Tall, “Measurement of residual stress: a study of methods,” Rep. 337.8 (Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University, 1971).

Terrien, J.

J. Terrien, Metrologia 1, 80 (1965).
[CrossRef]

Wiemen, C.

Yamamoto, Y.

S. Koboyashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. 18, 582 (1982).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Li, A. Hohl, A Gavrielides, H. Hou, and K. D. Choquette, Appl. Phys. Lett. 72, 2355 (1998).
[CrossRef]

Army Ordnance (1)

H. H. Lester and R. H. Aborn, Army Ordnance 6, 120 (1925).

Br. J. Appl. Phys. (1)

H. T. Jessop, Br. J. Appl. Phys. 4, 138 (1953).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Donati and G. Giuliani, IEEE J. Quantum Electron. 31, 113 (1995).
[CrossRef]

S. Koboyashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. 18, 582 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Metrologia (1)

J. Terrien, Metrologia 1, 80 (1965).
[CrossRef]

New Sci. (1)

P. G. R. King and G. J. Steward, New Sci. 17, 180 (1963).

Phys. Rev. (1)

E. Lamb, Phys. Rev. 134, A1429 (1964).
[CrossRef]

Weld. J. (1)

A. W. Huber and L. S. Beedle, Weld. J. 33, 589 (1954).

Zavodskaya Laboratoria (1)

L. A. Glikman, Zavodskaya Laboratoria 5, 63 (1936).

Other (4)

J. Mathar, in Transactions ASME (ASME, 1934), p. 249.

N. Tebedge, G. A. Alpsten, and L. Tall, “Measurement of residual stress: a study of methods,” Rep. 337.8 (Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University, 1971).

N. Kalakoutsky, The Study of Residual Stresses in Cast Iron and Steel (1888).

R. L. Gause, “Nondestructive testing: trends and techniques” NASA SP-5082 (NASA, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Physical map and schematic diagram of samples with internal stress.

Fig. 2.
Fig. 2.

Setup for internal stress measurement. D1, D2, photo detectors; S, material with internal stress; M1, M2, high reflector; G, antireflective mirror; F, force; ME, feedback mirror; PZT, piezoelectric transducer; P, polarizer; AMP, voltage amplification; DA, digital-to-analog signal conversion; AD, analog-to-digital signal conversion.

Fig. 3.
Fig. 3.

Phenomenon of polarization flipping and intensity transfer.

Fig. 4.
Fig. 4.

Physical map of Nd:YAG crystal and GaN plate.

Tables (3)

Tables Icon

Table 1. Measurement Results of Vacuum Tube

Tables Icon

Table 2. Internal Stress Distribution of Nd:YAG Crystal

Tables Icon

Table 3. Internal Stress of a GaN Plate

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Bf=σfs,
αo=αoαeθoeβe,αe=αeαoθeoβo,
αo=Fo[Zi(ξo)Zi(0)1η],αe=Fe[Zi(ξe)Zi(0)1η],
Zi(ξ)=πexp(ξ2),ξo=νoν0109,ξe=νeν0109,Fo=η2π·Δ·[0.003+(0.006+(1Reffo))·0.5+0.007],Fe=η2π·Δ·[0.003+(0.006+(1Reffe))·0.5+0.007],Reffo=R2+2r2ret22cos(2kl),Reffe=R2+2r2ret22cos(2kl+2δ),
δ=(tBCtAD+tFGtEH)×π2,

Metrics