Abstract

Third- and fifth-harmonic generation by ultrashort laser pulses in the mid-infrared (mid-IR) reveals nonlinear-optical effects beyond the fifth-order nonlinearity and enables, because of an extraordinarily long coherence length, efficient multiplex frequency upconversion of ultrashort mid-IR pulses. We show that harmonic generation by mid-IR pulses provides an access to the key optical constants of gas media, allowing metrology of linear and nonlinear-optical susceptibilities in the mid-IR and offering a tool for the remote sensing of the atmosphere.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen, Nonlinear Optics (Benjamin, 1977).
  2. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).
  3. J. A. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, Opt. Express 3, 315 (1998).
    [CrossRef]
  4. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
    [CrossRef]
  5. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugdžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 36, 2755 (2011).
    [CrossRef]
  6. G. O. Ariunbold, P. Polynkin, and J. V. Moloney, Opt. Express 20, 1662 (2012).
    [CrossRef]
  7. L. Bergé, Opt. Express 16, 21529 (2008).
    [CrossRef]
  8. B. Shim, S. E. Schrauth, and A. L. Gaeta, Opt. Express 19, 9118 (2011).
    [CrossRef]
  9. A. A. Voronin, S. Ališauskas, O. D. Mücke, A. Pugdžys, A. Baltuška, and A. M. Zheltikov, Phys. Rev. A 84, 023832 (2011).
    [CrossRef]
  10. D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.
  11. M. J. Weber, Handbook of Optical Materials (CRC, 2003).
  12. R. J. Mathar, Appl. Opt. 43, 928 (2004).
    [CrossRef]
  13. URL: http://www.cfa.harvard.edu/hitran/ .
  14. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
    [CrossRef]

2012 (1)

G. O. Ariunbold, P. Polynkin, and J. V. Moloney, Opt. Express 20, 1662 (2012).
[CrossRef]

2011 (3)

2010 (1)

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

2008 (1)

2007 (1)

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

2004 (1)

1998 (1)

Ališauskas, S.

A. A. Voronin, S. Ališauskas, O. D. Mücke, A. Pugdžys, A. Baltuška, and A. M. Zheltikov, Phys. Rev. A 84, 023832 (2011).
[CrossRef]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugdžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 36, 2755 (2011).
[CrossRef]

D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.

Andriukaitis, G.

Ariunbold, G. O.

G. O. Ariunbold, P. Polynkin, and J. V. Moloney, Opt. Express 20, 1662 (2012).
[CrossRef]

Balciunas, T.

Baltuška, A.

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugdžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 36, 2755 (2011).
[CrossRef]

A. A. Voronin, S. Ališauskas, O. D. Mücke, A. Pugdžys, A. Baltuška, and A. M. Zheltikov, Phys. Rev. A 84, 023832 (2011).
[CrossRef]

D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.

Bejot, P.

D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.

Béjot, P.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Bergé, L.

Bloembergen, N.

N. Bloembergen, Nonlinear Optics (Benjamin, 1977).

Brakenhoff, G. J.

Chen, M.-C.

Corkum, P. B.

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

Faucher, O.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Gaeta, A. L.

Henin, S.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Hertz, E.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Kapteyn, H. C.

Kartashov, D. V.

D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.

Kasparian, J.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.

Krausz, F.

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

Lavorel, B.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Loriot, V.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Mathar, R. J.

Moloney, J. V.

G. O. Ariunbold, P. Polynkin, and J. V. Moloney, Opt. Express 20, 1662 (2012).
[CrossRef]

Mücke, O. D.

A. A. Voronin, S. Ališauskas, O. D. Mücke, A. Pugdžys, A. Baltuška, and A. M. Zheltikov, Phys. Rev. A 84, 023832 (2011).
[CrossRef]

Müller, M.

Murnane, M. M.

Petrarca, M.

D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.

Polynkin, P.

G. O. Ariunbold, P. Polynkin, and J. V. Moloney, Opt. Express 20, 1662 (2012).
[CrossRef]

Popmintchev, T.

Pug?lys, A.

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugdžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 36, 2755 (2011).
[CrossRef]

D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.

Pug?ys, A.

A. A. Voronin, S. Ališauskas, O. D. Mücke, A. Pugdžys, A. Baltuška, and A. M. Zheltikov, Phys. Rev. A 84, 023832 (2011).
[CrossRef]

Reintjes, J. F.

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).

Schrauth, S. E.

Shim, B.

Squier, J. A.

Vieillard, T.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Voronin, A.

D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.

Voronin, A. A.

A. A. Voronin, S. Ališauskas, O. D. Mücke, A. Pugdžys, A. Baltuška, and A. M. Zheltikov, Phys. Rev. A 84, 023832 (2011).
[CrossRef]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

Wilson, K. R.

Wolf, J.-P.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Zheltikov, A. M.

A. A. Voronin, S. Ališauskas, O. D. Mücke, A. Pugdžys, A. Baltuška, and A. M. Zheltikov, Phys. Rev. A 84, 023832 (2011).
[CrossRef]

D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.

Appl. Opt. (1)

Nat. Phys. (1)

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

Opt. Express (1)

G. O. Ariunbold, P. Polynkin, and J. V. Moloney, Opt. Express 20, 1662 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

A. A. Voronin, S. Ališauskas, O. D. Mücke, A. Pugdžys, A. Baltuška, and A. M. Zheltikov, Phys. Rev. A 84, 023832 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Other (5)

D. V. Kartashov, S. Ališauskas, A. Pugdžlys, A. Baltuška, A. Voronin, A. M. Zheltikov, M. Petrarca, P. Bejot, and J. Kasparian, Ultrafast Optics (UFO VIII) (OSA, 2011), p. 71.

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

URL: http://www.cfa.harvard.edu/hitran/ .

N. Bloembergen, Nonlinear Optics (Benjamin, 1977).

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Intensities of the (a), (b) third and (c)–(f) fifth harmonics measured (solid lines) and calculated (dashed lines) as a function of the propagation path of 80 fs mid-IR pump pulses (a), (c) in argon and (b), (d)–(f) in the atmospheric air. The pump energy is (d) 4 mJ, (e) 6.5 mJ, and (a)–(c), (f) 9 mJ.

Fig. 2.
Fig. 2.

Spectra of the (a), (b) third and (c), (d) fifth harmonics (a), (c) measured and (b), (d) calculated for different propagation paths of the pump field in the atmospheric air. The harmonic intensities at a fixed wavelength (horizontal lines in the map) are shown on top of the experimental maps.

Fig. 3.
Fig. 3.

Dispersion of atmospheric air calculated using the Mathar model [12] for (a) a humidity of 50% and temperatures of 20 °C (solid line) and 40 °C (dashed line), and (b) 20 °C and humidities of 10% (solid line) and 50% (dashed line). (c), (d) Fifth-harmonic intensity calculated as a function of the propagation path for different (c) temperatures and (d) humidities of the atmospheric air.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ˜ z = [ i D ^ ( ω ) α ( ω ) ] E ˜ + i ω 2 c F ^ [ m = 3 9 χ ( m ) E m ] .
E ˜ ( 3 ω 0 , z ) = i 3 ω 0 2 c χ ( 3 ) ( 3 ω ; ω , ω , ω ) E ˜ 3 ( ω 0 , 0 ) × sin ( Δ k 3 / 2 ) Δ k 3 / 2 e i Δ k 3 z / 2 ,
E ˜ ( 5 ω 0 , z ) = i 5 ω 0 2 c χ ( 5 ) ( 5 ω ; ω , ω , ω , ω , ω ) E ˜ 5 ( ω 0 , 0 ) × sin ( Δ k 5 / 2 ) Δ k 5 / 2 e i Δ k 5 z / 2 i 45 ω 0 2 2 c 2 Δ k 3 χ ( 3 ) ( 3 ω ; ω , ω , ω ) χ ( 3 ) ( 5 ω ; 3 ω , ω , ω ) E ˜ 5 ( ω 0 , 0 ) × [ sin ( Δ k 5 / 2 ) Δ k 5 / 2 e i Δ k 5 z / 2 sin ( Δ k 35 / 2 ) Δ k 35 / 2 e i Δ k 35 z / 2 ] ,

Metrics