Abstract

The effects of linear or circular birefringence on the operation of Brillouin dynamic grating are experimentally investigated where the birefringence is induced by bending or twisting a single-mode optical fiber, respectively. Experimental results show that the reflection spectrum of the dynamic grating in a 5 m fiber is split by bend-induced linear birefringence with the separation frequency dependent on the bending diameter, matching well with the theoretical model. Meanwhile, the spectrum is almost immune to circular birefringence induced by twist with a rate of up to 24turns/m.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, W. Zou, Z. He, and K. Hotate, Opt. Lett. 33, 926 (2008).
    [CrossRef]
  2. W. Zou, Z. He, K. Y. Song, and K. Hotate, Opt. Lett. 34, 1126 (2009).
    [CrossRef]
  3. K. Y. Song, K. Lee, and S. B. Lee, Opt. Express 17, 10344 (2009).
    [CrossRef]
  4. Y. Dong, L. Chen, and X. Bao, Opt. Lett. 35, 193 (2010).
    [CrossRef]
  5. K. Y. Song and H. J. Yoon, Opt. Lett. 35, 2958 (2010).
    [CrossRef]
  6. K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, J. Lightwave Technol. 28, 2062 (2010).
    [CrossRef]
  7. K. Y. Song, Opt. Lett. 36, 4686 (2011).
    [CrossRef]
  8. M. O. Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
    [CrossRef]
  9. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Opt. Lett. 5, 273 (1980).
    [CrossRef]
  10. R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef]

2011 (1)

2010 (3)

2009 (2)

2008 (1)

1994 (1)

M. O. Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

1980 (1)

1979 (1)

Bao, X.

Boot, A. J.

M. O. Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

Chen, L.

Chin, S.

Deventer, M. O.

M. O. Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

Dong, Y.

Eickhoff, W.

He, Z.

Hotate, K.

Lee, K.

Lee, S. B.

Primerov, N.

Rashleigh, S. C.

Simon, A.

Song, K. Y.

Thévenaz, L.

Ulrich, R.

Yoon, H. J.

Zou, W.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the BDG operation in an optical fiber with (a) linear or (b) circular birefringence.

Fig. 2.
Fig. 2.

Experimental setup for the BDG measurement under birefringence in a SMF: LD, laser diode; EDFA, Er-doped fiber amplifier; PC, polarization controller; SSBM, single-sideband modulator; EOM, electro-optic modulator; PBS, polarization beam splitter; PD, photo detector; PSW, polarization switch; FBG, fiber Bragg grating; LIA, lock-in amplifier; DAQ, data acquisition module.

Fig. 3.
Fig. 3.

(a) Measured Brillouin gain spectrum (gray) and BDG spectrum (black) of the FUT fitted with aLorentzian and a sinc-squared curves (red), respectively. (b) Examples of the BDG spectra measured under different bending diameters. Note that (a)–(d) correspond to different diameters, and the dashed line indicates the frequency of Pump1.

Fig. 4.
Fig. 4.

(a) Separation of the BDG peaks as a function of bending diameter in polarization switching of pump waves. Note the curve is the theoretical graph. (b) 3 dB bandwidth of the BDG spectrum with respect to bending diameter. Note the dashed line denotes the Brillouin gain bandwidth.

Fig. 5.
Fig. 5.

(a) Separation of the BDG peaks as a function of twist rate in polarization switching of pump waves. (b) Reflectance and 3 dB bandwidth of the BDG with respect to twist rate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δν=Δnng·ν,
Δn=n3(p11p12)·(1+γ)r2D22.1×103D2,
Δf=2|Δν|5.6×1011D2(Hz).

Metrics