Abstract

A circular polarizer, which is composed of periodic and two-dimensional dielectric high-contrast gratings, is designed theoretically such that a unity conversion efficiency is achieved at λ0=1.55μm. The operation is obtained by the achievement of the simultaneous unity transmission of transverse magnetic and transverse electric waves with a phase difference of π/2, meaning that an optimized geometrical anisotropy is accomplished. By the utilization of the rigorous coupled-wave analysis and finite-difference time-domain methods, it is shown that a percent bandwidth of 50% can be achieved when the operation bandwidth is defined as the wavelengths for which the conversion efficiency exceeds 0.9.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518(2004).
    [CrossRef]
  2. C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676(2004).
    [CrossRef]
  3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 1, 119 (2007).
    [CrossRef]
  4. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, Opt. Express 17, 1508 (2009).
    [CrossRef]
  5. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, Opt. Express 18, 12606 (2010).
    [CrossRef]
  6. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
    [CrossRef]
  7. D. Zhao, H. Yang, Z. Ma, and W. Zhou, Opt. Express 19, 9050 (2011).
    [CrossRef]
  8. H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, J. Opt. 12, 015703 (2010).
    [CrossRef]
  9. W.-M. Ye, X.-D. Yuan, C.-C. Guo, and C. Zen, Opt. Express 18, 7590 (2010).
    [CrossRef]
  10. L. Carletti, R. Malureanu, J. Mørk, and I.-S. Chung, Opt. Express 19, 23567 (2011).
    [CrossRef]
  11. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, Opt. Express 18, 16973 (2010).
    [CrossRef]
  12. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  13. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Opt. Lett. 36, 1653 (2011).
    [CrossRef]
  14. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  15. C. A. Balanis, Antenna Theory: Analysis and Design(Wiley, 2005).

2011 (3)

2010 (5)

2009 (1)

2007 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 1, 119 (2007).
[CrossRef]

2004 (2)

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518(2004).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676(2004).
[CrossRef]

1995 (1)

Akosman, A. E.

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design(Wiley, 2005).

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Carletti, L.

Chang-Hasnain, C.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518(2004).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676(2004).
[CrossRef]

Chang-Hasnain, C. J.

Chase, C.

Chen, L.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676(2004).
[CrossRef]

Chung, I.-S.

Deng, Y.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518(2004).
[CrossRef]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Gao, D.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, J. Opt. 12, 015703 (2010).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Guo, C.-C.

Guo, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, J. Opt. 12, 015703 (2010).
[CrossRef]

Hao, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, J. Opt. 12, 015703 (2010).
[CrossRef]

Hou, J.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, J. Opt. 12, 015703 (2010).
[CrossRef]

Huang, M.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518(2004).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676(2004).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 1, 119 (2007).
[CrossRef]

Karagodsky, V.

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Lu, F.

Ma, Z.

Malureanu, R.

Mateus, C.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676(2004).
[CrossRef]

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518(2004).
[CrossRef]

Mo, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, J. Opt. 12, 015703 (2010).
[CrossRef]

Moharam, M. G.

Mørk, J.

Mutlu, M.

Neureuther, A.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518(2004).
[CrossRef]

Ozbay, E.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Pesala, B.

Pommet, D. A.

Sedgwick, F. G.

Serebryannikov, A. E.

Suzuki, Y.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676(2004).
[CrossRef]

Wu, H.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, J. Opt. 12, 015703 (2010).
[CrossRef]

Wu, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, J. Opt. 12, 015703 (2010).
[CrossRef]

Yang, H.

Ye, W.-M.

Yuan, X.-D.

Zen, C.

Zhao, D.

Zhou, W.

Zhou, Y.

Zhou, Z.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, J. Opt. 12, 015703 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518(2004).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, IEEE Photon. Technol. Lett. 16, 1676(2004).
[CrossRef]

J. Opt. (1)

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, J. Opt. 12, 015703 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photon. (2)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, Nat. Photon. 1, 119 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

C. A. Balanis, Antenna Theory: Analysis and Design(Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Geometrical description of the HCG circular polarizer. The dark regions indicate the presence of Si, whereas the white regions are SiO2.

Fig. 2.
Fig. 2.

Normalized magnetic field distributions at λ0=1.55μm inside region II, (a) |Hy|/|H0| and (b) |Hx|/|H0| for TM and TE waves, respectively. The distributions are obtained under the two-mode approximation. Grooves and ridges are separated by the white dashed lines and denoted by G and R, respectively.

Fig. 3.
Fig. 3.

(a) Field transmission coefficients for TM and TE waves, and (b) phase difference between the transmission coefficients.

Fig. 4.
Fig. 4.

(a) Circular conversion coefficients obtained using the RCWA and (b) the conversion efficiencies obtained from the RCWA and FDTD. The wavelength range for the FDTD result satisfying the 0.9 efficiency threshold is denoted by Δλ.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

|m(amamρ)Λ10Λhy,min(x)dx|=1,
(mH0,mTMATM)(mH0,mTEATE)=±π/2,
H0,mTM=Λ10Λhy,min(x)dx.
βm2=(2πng/λ0)2kg,m2=(2πnbar/λ0)2kr,m2,
nbar2kr,mtan(kr,mr/2)=ng2kg,mtan(kg,mg/2).
kr,mtan(kr,mr/2)=kg,mtan(kg,mg/2).
Ceff=|C+|2|C|2|C+|2+|C|2.
BW%=200%λH/λL1λH/λL+1,

Metrics