Abstract

We report on a functional optical microfiber mode interferometer and its applications for absolute, temperature-insensitive refractive index sensing. A standard optical fiber was tapered down to 10 μm. The central part of the taper, i.e., the microfiber, is connected to the untapered regions with two identical abrupt transitions. The transmission spectrum of our device exhibited a sinusoidal pattern due to the beating between modes. In our interferometer the period of the pattern—an absolute parameter—depends strongly on the surrounding refractive index but it is insensitive to temperature changes. The period, hence the external index, can be accurately measured by taking the fast Fourier transform (FFT) of the detected interference pattern. The measuring refractive index range of the device here proposed goes from 1.33 to 1.428 and the maximum resolution is on the order of 3.7×106.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, Adv. Opt. Photon. 1, 107 (2009).
    [CrossRef]
  2. M. Sumetsky, in Advanced Photonic Structures for Biological Chemical Detection (Springer, 2009).
  3. L. Zhang, J. Lou, and L. Tong, Photonic Sens. 1, 31 (2011).
    [CrossRef]
  4. H. Xuan, W. Jin, and M. Zhang, Opt. Express 17, 21882 (2009).
    [CrossRef]
  5. X. Fang, C. R. Liao, and D. N. Wang, Opt. Lett. 35, 1007 (2010).
    [CrossRef]
  6. E. Cibula and D. Ðonlagić, IEEE Photon. Technol. Lett. 23, 1609 (2011).
  7. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. Shum Ping, and D. Liu, Opt. Lett. 37, 67 (2012).
    [CrossRef]
  8. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, J. Lightwave Technol. 24, 242 (2006).
    [CrossRef]
  9. L. Shi, Y. Shu, W. Tan, and X. Chen, Sensors 7, 689 (2007).
    [CrossRef]
  10. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, Opt. Express 15, 14376 (2007).
    [CrossRef]
  11. F. Xu and G. Brambilla, Appl. Phys. Lett. 92, 101126 (2008).
    [CrossRef]
  12. M. Sumetsky, Y. Dulashko, and S. Ghalmi, Opt. Lasers Eng. 48, 272 (2010).
    [CrossRef]
  13. K. Q. Kieu and M. Mansuripur, IEEE Photonics Technol. Lett. 18, 2239 (2006).
    [CrossRef]
  14. Z. Tian, S. S-H. Yam, and H.-P. Loock, Opt. Lett. 33, 1105 (2008).
    [CrossRef]
  15. M. I. Zibaii, O. Frazão, H. Latifi, and P. A. S. Jorge, IEEE Photonics Technol. Lett. 23, 1219 (2011).
    [CrossRef]
  16. J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, Opt. Lett. 36, 3593 (2011).
    [CrossRef]
  17. F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, and J. Bures, Appl. Opt. 26, 444 (1987).
    [CrossRef]
  18. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, Opt. Express 17, 21551 (2009).
    [CrossRef]
  19. H. P. Hsue, Fourier Analysis (Simon & Schuster, 1970).

2012

2011

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, Opt. Lett. 36, 3593 (2011).
[CrossRef]

L. Zhang, J. Lou, and L. Tong, Photonic Sens. 1, 31 (2011).
[CrossRef]

E. Cibula and D. Ðonlagić, IEEE Photon. Technol. Lett. 23, 1609 (2011).

M. I. Zibaii, O. Frazão, H. Latifi, and P. A. S. Jorge, IEEE Photonics Technol. Lett. 23, 1219 (2011).
[CrossRef]

2010

M. Sumetsky, Y. Dulashko, and S. Ghalmi, Opt. Lasers Eng. 48, 272 (2010).
[CrossRef]

X. Fang, C. R. Liao, and D. N. Wang, Opt. Lett. 35, 1007 (2010).
[CrossRef]

2009

2008

Z. Tian, S. S-H. Yam, and H.-P. Loock, Opt. Lett. 33, 1105 (2008).
[CrossRef]

F. Xu and G. Brambilla, Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

2007

2006

1987

Brambilla, G.

Bures, J.

Chang, Y.-L.

Chen, X.

L. Shi, Y. Shu, W. Tan, and X. Chen, Sensors 7, 689 (2007).
[CrossRef]

Cibula, E.

E. Cibula and D. Ðonlagić, IEEE Photon. Technol. Lett. 23, 1609 (2011).

Coviello, G.

Cui, Y.

DiGiovanni, D. J.

Ðonlagic, D.

E. Cibula and D. Ðonlagić, IEEE Photon. Technol. Lett. 23, 1609 (2011).

Dulashko, Y.

Fan, X.

Fang, X.

Feng, X.

Finazzi, V.

Fini, J. M.

Frazão, O.

M. I. Zibaii, O. Frazão, H. Latifi, and P. A. S. Jorge, IEEE Photonics Technol. Lett. 23, 1219 (2011).
[CrossRef]

Gao, S.

Ghalmi, S.

M. Sumetsky, Y. Dulashko, and S. Ghalmi, Opt. Lasers Eng. 48, 272 (2010).
[CrossRef]

Gonthier, F.

Guan, B.-O.

Hale, A.

Horak, P.

Hsue, H. P.

H. P. Hsue, Fourier Analysis (Simon & Schuster, 1970).

Jin, L.

Jin, W.

Jorge, P. A. S.

M. I. Zibaii, O. Frazão, H. Latifi, and P. A. S. Jorge, IEEE Photonics Technol. Lett. 23, 1219 (2011).
[CrossRef]

Jung, Y.

Kieu, K. Q.

K. Q. Kieu and M. Mansuripur, IEEE Photonics Technol. Lett. 18, 2239 (2006).
[CrossRef]

Koizumi, F.

Koukharenko, E.

Lacroix, S.

Lapierre, J.

Latifi, H.

M. I. Zibaii, O. Frazão, H. Latifi, and P. A. S. Jorge, IEEE Photonics Technol. Lett. 23, 1219 (2011).
[CrossRef]

Li, J.

Liang, R.

Liao, C. R.

Liu, D.

Loock, H.-P.

Lou, J.

L. Zhang, J. Lou, and L. Tong, Photonic Sens. 1, 31 (2011).
[CrossRef]

Mansuripur, M.

K. Q. Kieu and M. Mansuripur, IEEE Photonics Technol. Lett. 18, 2239 (2006).
[CrossRef]

Murugan, G. S.

Ping, P. Shum

Pruneri, V.

Quan, Z.

Ran, Y.

Richardson, D. J.

Sessions, N. P.

Shi, L.

L. Shi, Y. Shu, W. Tan, and X. Chen, Sensors 7, 689 (2007).
[CrossRef]

Shu, Y.

L. Shi, Y. Shu, W. Tan, and X. Chen, Sensors 7, 689 (2007).
[CrossRef]

Sumetsky, M.

M. Sumetsky, Y. Dulashko, and S. Ghalmi, Opt. Lasers Eng. 48, 272 (2010).
[CrossRef]

M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, Opt. Express 15, 14376 (2007).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, J. Lightwave Technol. 24, 242 (2006).
[CrossRef]

M. Sumetsky, in Advanced Photonic Structures for Biological Chemical Detection (Springer, 2009).

Sun, L.-P.

Sun, Q.

Tan, W.

L. Shi, Y. Shu, W. Tan, and X. Chen, Sensors 7, 689 (2007).
[CrossRef]

Tian, Z.

Tong, L.

L. Zhang, J. Lou, and L. Tong, Photonic Sens. 1, 31 (2011).
[CrossRef]

Veilleux, C.

Villatoro, J.

Wang, D. N.

Wang, G.

Wilkinson, J. S.

Windeler, R. S.

Wo, J.

Xu, F.

Xuan, H.

Yam, S. S-H.

Zhang, L.

L. Zhang, J. Lou, and L. Tong, Photonic Sens. 1, 31 (2011).
[CrossRef]

Zhang, M.

Zibaii, M. I.

M. I. Zibaii, O. Frazão, H. Latifi, and P. A. S. Jorge, IEEE Photonics Technol. Lett. 23, 1219 (2011).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. Lett.

F. Xu and G. Brambilla, Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

E. Cibula and D. Ðonlagić, IEEE Photon. Technol. Lett. 23, 1609 (2011).

IEEE Photonics Technol. Lett.

K. Q. Kieu and M. Mansuripur, IEEE Photonics Technol. Lett. 18, 2239 (2006).
[CrossRef]

M. I. Zibaii, O. Frazão, H. Latifi, and P. A. S. Jorge, IEEE Photonics Technol. Lett. 23, 1219 (2011).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lasers Eng.

M. Sumetsky, Y. Dulashko, and S. Ghalmi, Opt. Lasers Eng. 48, 272 (2010).
[CrossRef]

Opt. Lett.

Photonic Sens.

L. Zhang, J. Lou, and L. Tong, Photonic Sens. 1, 31 (2011).
[CrossRef]

Sensors

L. Shi, Y. Shu, W. Tan, and X. Chen, Sensors 7, 689 (2007).
[CrossRef]

Other

M. Sumetsky, in Advanced Photonic Structures for Biological Chemical Detection (Springer, 2009).

H. P. Hsue, Fourier Analysis (Simon & Schuster, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Drawing of the proposed interferometer for refractive index sensing. Tt, L, d, represent, respectively, the taper transition length, and the length and diameter of microfiber. A micrograph of one of the taper transitions is shown.

Fig. 2.
Fig. 2.

Period as a function of the microfiber length. The squares are experimental values and the continuous line is a fitting to the data. The inset shows the transmission spectra of a device when L was 10 mm (black line) and 30 mm (dotted line). In all cases, Tt was 1 mm, d was 10 μm, and the external medium was air.

Fig. 3.
Fig. 3.

Period as a function of temperature observed in a device with L=30mm and d=10μm when the external medium was air. The measurements were carried out at λ0=1550nm.

Fig. 4.
Fig. 4.

Normalized transmission spectra of a sample immersed in Cargille oils with different indices. L=30mm and d=10μm.

Fig. 5.
Fig. 5.

Normalized FFT modulus of the transmission spectra of a device with L=30mm, d=10μm immersed in air (black line), distilled water (red line), Cargille oils with indices of 1.36 (green line), 1.39 (blue line), and 1.42 (dark green line).

Fig. 6.
Fig. 6.

Period as a function of the external index observed in a device with L=30mm and d=10μm. The measurements were carried out at λ0=1550nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H(λ)=I1+I2+2I1I2cos(δϕ),
P=λ02/(ΔnL).
H(λ)=I1+I2+2I1I2cos(2πλ/P+Δφ),

Metrics