Abstract

A generalized product-of-convolution model for simulation of quantitative phase microscopy of thick heterogeneous specimen under tilted plane-wave illumination is presented. Actual simulations are checked against a much more time-consuming commercial finite-difference time-domain method. Then modeled data are compared with experimental measurements that were made with a quadriwave lateral shearing interferometer.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, Opt. Express 17, 13080 (2009).
    [CrossRef]
  2. B. Kemper and G. von Bally, Appl. Opt. 47, A52 (2008).
    [CrossRef]
  3. E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
    [CrossRef]
  4. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
    [CrossRef]
  5. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, Opt. Lett. 31, 775 (2006).
    [CrossRef]
  6. B. Chen and J. J. Stamnes, Appl. Opt. 37, 2996 (1998).
    [CrossRef]
  7. H. Sierra, C. A. DiMarzio, and D. H. Brooks, J. Opt. Soc. Am. A 26, 1268 (2009).
    [CrossRef]
  8. V. Lauer, J. Microsc. 205, 165 (2002).
    [CrossRef]
  9. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, Opt. Lett. 34, 79 (2009).
    [CrossRef]
  10. M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, Meas. Sci. Technol. 19, 074009 (2008).
    [CrossRef]
  11. E. Wolf, Opt. Commun. 1, 153 (1969).
    [CrossRef]
  12. S. S. Kou and C. J. R. Sheppard, Appl. Opt. 48, H168 (2009).
    [CrossRef]

2009

2008

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

B. Kemper and G. von Bally, Appl. Opt. 47, A52 (2008).
[CrossRef]

2006

2002

V. Lauer, J. Microsc. 205, 165 (2002).
[CrossRef]

1999

1998

1969

E. Wolf, Opt. Commun. 1, 153 (1969).
[CrossRef]

Barty, A.

Bevilacqua, F.

Bon, P.

Brooks, D. H.

Chen, B.

Cuche, E.

Dasari, R. R.

Debailleul, M.

M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, Opt. Lett. 34, 79 (2009).
[CrossRef]

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

Depeursinge, C.

DiMarzio, C. A.

Feld, M. S.

Georges, V.

M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, Opt. Lett. 34, 79 (2009).
[CrossRef]

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

Haeberlé, O.

M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, Opt. Lett. 34, 79 (2009).
[CrossRef]

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

Ikeda, T.

Kemper, B.

Kou, S. S.

Lauer, V.

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

V. Lauer, J. Microsc. 205, 165 (2002).
[CrossRef]

Maucort, G.

Monneret, S.

Morin, R.

Nugent, K. A.

Paganin, D.

Popescu, G.

Roberts, A.

Sheppard, C. J. R.

Sierra, H.

Simon, B.

M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, Opt. Lett. 34, 79 (2009).
[CrossRef]

M. Debailleul, B. Simon, V. Georges, O. Haeberlé, and V. Lauer, Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

Stamnes, J. J.

von Bally, G.

Wattellier, B.

Wolf, E.

E. Wolf, Opt. Commun. 1, 153 (1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Atomic force microscopy measurement. (b) Schematic of the sample in the (x,z) plane. (c) G-POC simulation, NAobj=0.5. (d) QWLSI measurement, objective 20×, NAobj=0.5. (e) Line-out of (c) (red solid curve), (d) (black dots). Projective model (refractive index difference multiplied by the local sample thickness, brown dashed line).

Fig. 2.
Fig. 2.

(a) OPD simulations with FDTD (left) and G-POC (right) for 15° illumination angle around the x axis. (b) Line-out along x of (a), FDTD in black, G-POC in red. (c) Same as (b) along the y direction. (d) Difference map of (a). (e) Same as (a) for 30° illumination angle around the x axis. (f) Same as (b) using data in (e). (g) Same as (c) using data in (e). (h) Difference map of (e). (i) Normalized difference between FDTD and G-POC as a function of the illumination angle.

Fig. 3.
Fig. 3.

(a) OPD simulations with G-POC (left) for 22° illumination angle around the x axis. OPD measurement with QWLSI (right) in the same conditions. (b) Line-out along x of (a), G-POC in black and QWLSI measurement in red points. (c) Same as (b) along the y direction. (d) Same as (a) for 29° illumination angle. (e) Same as (b) on the images (d). (f) Same as (c) on the images (d)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(x,y,Z)eiφ(x,y,Z)=[j(eiΔz0×2πλ0n(x,y,j·Δz0))Hπ/2(x,y,z=Zj·Δz0)]HΘmax(x,y,z=0),
kd=ki+Ko,
H˜θ(Kox,Koy,Koz)=1δ(kdz2+ρ2ki2)ifρkisin(θ)=0elsewhere,
Hθ(x,y,z)=ei(kixx+kiyy)kdzρ=0kisin(θ)δ(kdz2+ρ2ki2)×eiz[kdzkiz]×[ξ=02πei[xρcos(ξ)+yρsin(ξ)]dξ]dkdz·ρdρ.
Hθ(x,y,z)=ei(kixx+kiyy)ρ=0kisin(θ)ei[kiz±ki2ρ2]z×[ξ=02πei[xρcos(ξ)+yρsin(ξ)]dξ]dkdz·ρdρ.
H˜θ(Kox,Koy;z=Z)=[δ(kix,kiy)][ei[kiz±ki2ρ2]Z],ifρkisin(θ)=0elsewhere.
Δz(θi,x,y,z)=Δz0cos(θs)=Δz0γ(θ,x,y,z)=Δz01(nmn(x,y,z))2sin2(θi),

Metrics