Abstract

Three-dimensional inverted-woodpile (WP) structures were embedded in a microchannel by femtosecond laser direct-writing of fused silica followed by chemical etching with diluted hydrofluoric acid. We show the hole size is linearly dependent on laser-scanning depth for various pulse energies, permitting the control of laser exposures to facilitate close 5 µm periodic packing of uniform microcapillary arrays. Exposure compensation for depth-dependent etching rate and optical beam aberrations yielded stable and crack-free uniform inverted-WP structures. The direct formation of the inverted-WP structure together with microchannels in an all-fused silica substrate, offers chemical stability and inertness, and biocompatibility to be exploited as new microfluidic systems for chromatography and electro-osmotic pumps.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum
Opt. Lett. 30(14) 1867-1869 (2005)

Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching

Krishna Chaitanya Vishnubhatla, Nicola Bellini, Roberta Ramponi, Giulio Cerullo, and Roberto Osellame
Opt. Express 17(10) 8685-8695 (2009)

Fabrication and characterization of microstructures with optical quality surfaces in fused silica glass using femtosecond laser pulses and chemical etching

Yuri Sikorski, Corneliu Rablau, Mark Dugan, Ali A. Said, Philippe Bado, and Lars Guenter Beholz
Appl. Opt. 45(28) 7519-7523 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription